/export/starexec/sandbox/solver/bin/starexec_run_c_complexity /export/starexec/sandbox/benchmark/theBenchmark.c /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^1)) proof of /export/starexec/sandbox/output/output_files/bench.koat # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(1, n^1). (0) CpxIntTrs (1) Koat Proof [FINISHED, 76 ms] (2) BOUNDS(1, n^1) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: eval_foo_start(v_.01, v_i, v_x, v_y) -> Com_1(eval_foo_bb0_in(v_.01, v_i, v_x, v_y)) :|: TRUE eval_foo_bb0_in(v_.01, v_i, v_x, v_y) -> Com_1(eval_foo_bb1_in(v_x, v_i, v_x, v_y)) :|: v_x < 0 eval_foo_bb0_in(v_.01, v_i, v_x, v_y) -> Com_1(eval_foo_bb1_in(v_x, v_i, v_x, v_y)) :|: v_x > 0 eval_foo_bb0_in(v_.01, v_i, v_x, v_y) -> Com_1(eval_foo_bb3_in(v_.01, v_i, v_x, v_y)) :|: v_x >= 0 && v_x <= 0 eval_foo_bb1_in(v_.01, v_i, v_x, v_y) -> Com_1(eval_foo_bb2_in(v_.01, v_i, v_x, v_y)) :|: v_.01 > 0 && v_y > 0 eval_foo_bb1_in(v_.01, v_i, v_x, v_y) -> Com_1(eval_foo_bb3_in(v_.01, v_i, v_x, v_y)) :|: v_.01 <= 0 eval_foo_bb1_in(v_.01, v_i, v_x, v_y) -> Com_1(eval_foo_bb3_in(v_.01, v_i, v_x, v_y)) :|: v_y <= 0 eval_foo_bb2_in(v_.01, v_i, v_x, v_y) -> Com_1(eval_foo_bb1_in(v_.01 - v_y, v_i, v_x, v_y)) :|: TRUE eval_foo_bb3_in(v_.01, v_i, v_x, v_y) -> Com_1(eval_foo_stop(v_.01, v_i, v_x, v_y)) :|: TRUE The start-symbols are:[eval_foo_start_4] ---------------------------------------- (1) Koat Proof (FINISHED) YES(?, 2*ar_0 + 10) Initial complexity problem: 1: T: (Comp: ?, Cost: 1) evalfoostart(ar_0, ar_1, ar_2) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2)) (Comp: ?, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, ar_0, ar_2)) [ 0 >= ar_0 + 1 ] (Comp: ?, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, ar_0, ar_2)) [ ar_0 >= 1 ] (Comp: ?, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ ar_0 = 0 ] (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2)) [ ar_1 >= 1 /\ ar_2 >= 1 ] (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_1 ] (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, ar_1 - ar_2, ar_2)) (Comp: ?, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2) -> Com_1(evalfoostop(ar_0, ar_1, ar_2)) (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfoostart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 1 produces the following problem: 2: T: (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2)) (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, ar_0, ar_2)) [ 0 >= ar_0 + 1 ] (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, ar_0, ar_2)) [ ar_0 >= 1 ] (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ ar_0 = 0 ] (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2)) [ ar_1 >= 1 /\ ar_2 >= 1 ] (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_1 ] (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, ar_1 - ar_2, ar_2)) (Comp: ?, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2) -> Com_1(evalfoostop(ar_0, ar_1, ar_2)) (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfoostart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(evalfoostart) = 2 Pol(evalfoobb0in) = 2 Pol(evalfoobb1in) = 2 Pol(evalfoobb3in) = 1 Pol(evalfoobb2in) = 2 Pol(evalfoostop) = 0 Pol(koat_start) = 2 orients all transitions weakly and the transitions evalfoobb3in(ar_0, ar_1, ar_2) -> Com_1(evalfoostop(ar_0, ar_1, ar_2)) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_1 ] strictly and produces the following problem: 3: T: (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2)) (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, ar_0, ar_2)) [ 0 >= ar_0 + 1 ] (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, ar_0, ar_2)) [ ar_0 >= 1 ] (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ ar_0 = 0 ] (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2)) [ ar_1 >= 1 /\ ar_2 >= 1 ] (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_1 ] (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, ar_1 - ar_2, ar_2)) (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2) -> Com_1(evalfoostop(ar_0, ar_1, ar_2)) (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfoostart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(evalfoobb2in) = V_2 - V_3 Pol(evalfoobb1in) = V_2 and size complexities S("koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfoostart(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-0) = ar_0 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfoostart(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-1) = ar_1 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfoostart(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-2) = ar_2 S("evalfoobb3in(ar_0, ar_1, ar_2) -> Com_1(evalfoostop(ar_0, ar_1, ar_2))", 0-0) = ar_0 S("evalfoobb3in(ar_0, ar_1, ar_2) -> Com_1(evalfoostop(ar_0, ar_1, ar_2))", 0-1) = ? S("evalfoobb3in(ar_0, ar_1, ar_2) -> Com_1(evalfoostop(ar_0, ar_1, ar_2))", 0-2) = ar_2 S("evalfoobb2in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, ar_1 - ar_2, ar_2))", 0-0) = ar_0 S("evalfoobb2in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, ar_1 - ar_2, ar_2))", 0-1) = ? S("evalfoobb2in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, ar_1 - ar_2, ar_2))", 0-2) = ar_2 S("evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ]", 0-0) = ar_0 S("evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ]", 0-1) = ? S("evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ]", 0-2) = ar_2 S("evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_1 ]", 0-0) = ar_0 S("evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_1 ]", 0-1) = ? S("evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_1 ]", 0-2) = ar_2 S("evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2)) [ ar_1 >= 1 /\\ ar_2 >= 1 ]", 0-0) = ar_0 S("evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2)) [ ar_1 >= 1 /\\ ar_2 >= 1 ]", 0-1) = ? S("evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2)) [ ar_1 >= 1 /\\ ar_2 >= 1 ]", 0-2) = ar_2 S("evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ ar_0 = 0 ]", 0-0) = 0 S("evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ ar_0 = 0 ]", 0-1) = ar_1 S("evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ ar_0 = 0 ]", 0-2) = ar_2 S("evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, ar_0, ar_2)) [ ar_0 >= 1 ]", 0-0) = ar_0 S("evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, ar_0, ar_2)) [ ar_0 >= 1 ]", 0-1) = ar_0 S("evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, ar_0, ar_2)) [ ar_0 >= 1 ]", 0-2) = ar_2 S("evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, ar_0, ar_2)) [ 0 >= ar_0 + 1 ]", 0-0) = ar_0 S("evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, ar_0, ar_2)) [ 0 >= ar_0 + 1 ]", 0-1) = ar_0 S("evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, ar_0, ar_2)) [ 0 >= ar_0 + 1 ]", 0-2) = ar_2 S("evalfoostart(ar_0, ar_1, ar_2) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2))", 0-0) = ar_0 S("evalfoostart(ar_0, ar_1, ar_2) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2))", 0-1) = ar_1 S("evalfoostart(ar_0, ar_1, ar_2) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2))", 0-2) = ar_2 orients the transitions evalfoobb2in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, ar_1 - ar_2, ar_2)) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2)) [ ar_1 >= 1 /\ ar_2 >= 1 ] weakly and the transition evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2)) [ ar_1 >= 1 /\ ar_2 >= 1 ] strictly and produces the following problem: 4: T: (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2)) (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, ar_0, ar_2)) [ 0 >= ar_0 + 1 ] (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, ar_0, ar_2)) [ ar_0 >= 1 ] (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ ar_0 = 0 ] (Comp: ar_0, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2)) [ ar_1 >= 1 /\ ar_2 >= 1 ] (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_1 ] (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, ar_1 - ar_2, ar_2)) (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2) -> Com_1(evalfoostop(ar_0, ar_1, ar_2)) (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfoostart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 4 produces the following problem: 5: T: (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2)) (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, ar_0, ar_2)) [ 0 >= ar_0 + 1 ] (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, ar_0, ar_2)) [ ar_0 >= 1 ] (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ ar_0 = 0 ] (Comp: ar_0, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2)) [ ar_1 >= 1 /\ ar_2 >= 1 ] (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_1 ] (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] (Comp: ar_0, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, ar_1 - ar_2, ar_2)) (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2) -> Com_1(evalfoostop(ar_0, ar_1, ar_2)) (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfoostart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Complexity upper bound 2*ar_0 + 10 Time: 0.100 sec (SMT: 0.091 sec) ---------------------------------------- (2) BOUNDS(1, n^1)