/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 235 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 91 ms] (14) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: cond1(true, x) -> cond2(even(x), x) cond2(true, x) -> cond1(neq(x, 0), div2(x)) cond2(false, x) -> cond1(neq(x, 0), p(x)) neq(0, 0) -> false neq(0, s(x)) -> true neq(s(x), 0) -> true neq(s(x), s(y)) -> neq(x, y) even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) div2(0) -> 0 div2(s(0)) -> 0 div2(s(s(x))) -> s(div2(x)) p(0) -> 0 p(s(x)) -> x S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: cond1(true, x) -> cond2(even(x), x) cond2(true, x) -> cond1(neq(x, 0'), div2(x)) cond2(false, x) -> cond1(neq(x, 0'), p(x)) neq(0', 0') -> false neq(0', s(x)) -> true neq(s(x), 0') -> true neq(s(x), s(y)) -> neq(x, y) even(0') -> true even(s(0')) -> false even(s(s(x))) -> even(x) div2(0') -> 0' div2(s(0')) -> 0' div2(s(s(x))) -> s(div2(x)) p(0') -> 0' p(s(x)) -> x S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: cond1(true, x) -> cond2(even(x), x) cond2(true, x) -> cond1(neq(x, 0'), div2(x)) cond2(false, x) -> cond1(neq(x, 0'), p(x)) neq(0', 0') -> false neq(0', s(x)) -> true neq(s(x), 0') -> true neq(s(x), s(y)) -> neq(x, y) even(0') -> true even(s(0')) -> false even(s(s(x))) -> even(x) div2(0') -> 0' div2(s(0')) -> 0' div2(s(s(x))) -> s(div2(x)) p(0') -> 0' p(s(x)) -> x Types: cond1 :: true:false -> 0':s:y -> cond1:cond2 true :: true:false cond2 :: true:false -> 0':s:y -> cond1:cond2 even :: 0':s:y -> true:false neq :: 0':s:y -> 0':s:y -> true:false 0' :: 0':s:y div2 :: 0':s:y -> 0':s:y false :: true:false p :: 0':s:y -> 0':s:y s :: 0':s:y -> 0':s:y y :: 0':s:y hole_cond1:cond21_0 :: cond1:cond2 hole_true:false2_0 :: true:false hole_0':s:y3_0 :: 0':s:y gen_0':s:y4_0 :: Nat -> 0':s:y ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: cond1, cond2, even, neq, div2 They will be analysed ascendingly in the following order: cond1 = cond2 even < cond1 neq < cond2 div2 < cond2 ---------------------------------------- (6) Obligation: TRS: Rules: cond1(true, x) -> cond2(even(x), x) cond2(true, x) -> cond1(neq(x, 0'), div2(x)) cond2(false, x) -> cond1(neq(x, 0'), p(x)) neq(0', 0') -> false neq(0', s(x)) -> true neq(s(x), 0') -> true neq(s(x), s(y)) -> neq(x, y) even(0') -> true even(s(0')) -> false even(s(s(x))) -> even(x) div2(0') -> 0' div2(s(0')) -> 0' div2(s(s(x))) -> s(div2(x)) p(0') -> 0' p(s(x)) -> x Types: cond1 :: true:false -> 0':s:y -> cond1:cond2 true :: true:false cond2 :: true:false -> 0':s:y -> cond1:cond2 even :: 0':s:y -> true:false neq :: 0':s:y -> 0':s:y -> true:false 0' :: 0':s:y div2 :: 0':s:y -> 0':s:y false :: true:false p :: 0':s:y -> 0':s:y s :: 0':s:y -> 0':s:y y :: 0':s:y hole_cond1:cond21_0 :: cond1:cond2 hole_true:false2_0 :: true:false hole_0':s:y3_0 :: 0':s:y gen_0':s:y4_0 :: Nat -> 0':s:y Generator Equations: gen_0':s:y4_0(0) <=> 0' gen_0':s:y4_0(+(x, 1)) <=> s(gen_0':s:y4_0(x)) The following defined symbols remain to be analysed: even, cond1, cond2, neq, div2 They will be analysed ascendingly in the following order: cond1 = cond2 even < cond1 neq < cond2 div2 < cond2 ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: even(gen_0':s:y4_0(*(2, n6_0))) -> true, rt in Omega(1 + n6_0) Induction Base: even(gen_0':s:y4_0(*(2, 0))) ->_R^Omega(1) true Induction Step: even(gen_0':s:y4_0(*(2, +(n6_0, 1)))) ->_R^Omega(1) even(gen_0':s:y4_0(*(2, n6_0))) ->_IH true We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: cond1(true, x) -> cond2(even(x), x) cond2(true, x) -> cond1(neq(x, 0'), div2(x)) cond2(false, x) -> cond1(neq(x, 0'), p(x)) neq(0', 0') -> false neq(0', s(x)) -> true neq(s(x), 0') -> true neq(s(x), s(y)) -> neq(x, y) even(0') -> true even(s(0')) -> false even(s(s(x))) -> even(x) div2(0') -> 0' div2(s(0')) -> 0' div2(s(s(x))) -> s(div2(x)) p(0') -> 0' p(s(x)) -> x Types: cond1 :: true:false -> 0':s:y -> cond1:cond2 true :: true:false cond2 :: true:false -> 0':s:y -> cond1:cond2 even :: 0':s:y -> true:false neq :: 0':s:y -> 0':s:y -> true:false 0' :: 0':s:y div2 :: 0':s:y -> 0':s:y false :: true:false p :: 0':s:y -> 0':s:y s :: 0':s:y -> 0':s:y y :: 0':s:y hole_cond1:cond21_0 :: cond1:cond2 hole_true:false2_0 :: true:false hole_0':s:y3_0 :: 0':s:y gen_0':s:y4_0 :: Nat -> 0':s:y Generator Equations: gen_0':s:y4_0(0) <=> 0' gen_0':s:y4_0(+(x, 1)) <=> s(gen_0':s:y4_0(x)) The following defined symbols remain to be analysed: even, cond1, cond2, neq, div2 They will be analysed ascendingly in the following order: cond1 = cond2 even < cond1 neq < cond2 div2 < cond2 ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: cond1(true, x) -> cond2(even(x), x) cond2(true, x) -> cond1(neq(x, 0'), div2(x)) cond2(false, x) -> cond1(neq(x, 0'), p(x)) neq(0', 0') -> false neq(0', s(x)) -> true neq(s(x), 0') -> true neq(s(x), s(y)) -> neq(x, y) even(0') -> true even(s(0')) -> false even(s(s(x))) -> even(x) div2(0') -> 0' div2(s(0')) -> 0' div2(s(s(x))) -> s(div2(x)) p(0') -> 0' p(s(x)) -> x Types: cond1 :: true:false -> 0':s:y -> cond1:cond2 true :: true:false cond2 :: true:false -> 0':s:y -> cond1:cond2 even :: 0':s:y -> true:false neq :: 0':s:y -> 0':s:y -> true:false 0' :: 0':s:y div2 :: 0':s:y -> 0':s:y false :: true:false p :: 0':s:y -> 0':s:y s :: 0':s:y -> 0':s:y y :: 0':s:y hole_cond1:cond21_0 :: cond1:cond2 hole_true:false2_0 :: true:false hole_0':s:y3_0 :: 0':s:y gen_0':s:y4_0 :: Nat -> 0':s:y Lemmas: even(gen_0':s:y4_0(*(2, n6_0))) -> true, rt in Omega(1 + n6_0) Generator Equations: gen_0':s:y4_0(0) <=> 0' gen_0':s:y4_0(+(x, 1)) <=> s(gen_0':s:y4_0(x)) The following defined symbols remain to be analysed: neq, cond1, cond2, div2 They will be analysed ascendingly in the following order: cond1 = cond2 neq < cond2 div2 < cond2 ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: div2(gen_0':s:y4_0(*(2, n193_0))) -> gen_0':s:y4_0(n193_0), rt in Omega(1 + n193_0) Induction Base: div2(gen_0':s:y4_0(*(2, 0))) ->_R^Omega(1) 0' Induction Step: div2(gen_0':s:y4_0(*(2, +(n193_0, 1)))) ->_R^Omega(1) s(div2(gen_0':s:y4_0(*(2, n193_0)))) ->_IH s(gen_0':s:y4_0(c194_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: TRS: Rules: cond1(true, x) -> cond2(even(x), x) cond2(true, x) -> cond1(neq(x, 0'), div2(x)) cond2(false, x) -> cond1(neq(x, 0'), p(x)) neq(0', 0') -> false neq(0', s(x)) -> true neq(s(x), 0') -> true neq(s(x), s(y)) -> neq(x, y) even(0') -> true even(s(0')) -> false even(s(s(x))) -> even(x) div2(0') -> 0' div2(s(0')) -> 0' div2(s(s(x))) -> s(div2(x)) p(0') -> 0' p(s(x)) -> x Types: cond1 :: true:false -> 0':s:y -> cond1:cond2 true :: true:false cond2 :: true:false -> 0':s:y -> cond1:cond2 even :: 0':s:y -> true:false neq :: 0':s:y -> 0':s:y -> true:false 0' :: 0':s:y div2 :: 0':s:y -> 0':s:y false :: true:false p :: 0':s:y -> 0':s:y s :: 0':s:y -> 0':s:y y :: 0':s:y hole_cond1:cond21_0 :: cond1:cond2 hole_true:false2_0 :: true:false hole_0':s:y3_0 :: 0':s:y gen_0':s:y4_0 :: Nat -> 0':s:y Lemmas: even(gen_0':s:y4_0(*(2, n6_0))) -> true, rt in Omega(1 + n6_0) div2(gen_0':s:y4_0(*(2, n193_0))) -> gen_0':s:y4_0(n193_0), rt in Omega(1 + n193_0) Generator Equations: gen_0':s:y4_0(0) <=> 0' gen_0':s:y4_0(+(x, 1)) <=> s(gen_0':s:y4_0(x)) The following defined symbols remain to be analysed: cond2, cond1 They will be analysed ascendingly in the following order: cond1 = cond2