/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) NestedDefinedSymbolProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (4) CpxTRS (5) CpxTrsMatchBoundsTAProof [FINISHED, 0 ms] (6) BOUNDS(1, n^1) (7) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTRS (9) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (10) typed CpxTrs (11) OrderProof [LOWER BOUND(ID), 0 ms] (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 407 ms] (14) proven lower bound (15) LowerBoundPropagationProof [FINISHED, 0 ms] (16) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(f(0, x), 1) -> f(g(f(x, x)), x) f(g(x), y) -> g(f(x, y)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) NestedDefinedSymbolProof (UPPER BOUND(ID)) The TRS does not nest defined symbols. Hence, the left-hand sides of the following rules are not basic-reachable and can be removed: f(f(0, x), 1) -> f(g(f(x, x)), x) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(g(x), y) -> g(f(x, y)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(g(x), y) -> g(f(x, y)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (5) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 1. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1] transitions: g0(0) -> 0 f0(0, 0) -> 1 f1(0, 0) -> 2 g1(2) -> 1 g1(2) -> 2 ---------------------------------------- (6) BOUNDS(1, n^1) ---------------------------------------- (7) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (8) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(f(0', x), 1') -> f(g(f(x, x)), x) f(g(x), y) -> g(f(x, y)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (9) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (10) Obligation: TRS: Rules: f(f(0', x), 1') -> f(g(f(x, x)), x) f(g(x), y) -> g(f(x, y)) Types: f :: 0':1':g -> 0':1':g -> 0':1':g 0' :: 0':1':g 1' :: 0':1':g g :: 0':1':g -> 0':1':g hole_0':1':g1_0 :: 0':1':g gen_0':1':g2_0 :: Nat -> 0':1':g ---------------------------------------- (11) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: f ---------------------------------------- (12) Obligation: TRS: Rules: f(f(0', x), 1') -> f(g(f(x, x)), x) f(g(x), y) -> g(f(x, y)) Types: f :: 0':1':g -> 0':1':g -> 0':1':g 0' :: 0':1':g 1' :: 0':1':g g :: 0':1':g -> 0':1':g hole_0':1':g1_0 :: 0':1':g gen_0':1':g2_0 :: Nat -> 0':1':g Generator Equations: gen_0':1':g2_0(0) <=> 0' gen_0':1':g2_0(+(x, 1)) <=> g(gen_0':1':g2_0(x)) The following defined symbols remain to be analysed: f ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: f(gen_0':1':g2_0(+(1, n4_0)), gen_0':1':g2_0(b)) -> *3_0, rt in Omega(n4_0) Induction Base: f(gen_0':1':g2_0(+(1, 0)), gen_0':1':g2_0(b)) Induction Step: f(gen_0':1':g2_0(+(1, +(n4_0, 1))), gen_0':1':g2_0(b)) ->_R^Omega(1) g(f(gen_0':1':g2_0(+(1, n4_0)), gen_0':1':g2_0(b))) ->_IH g(*3_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: f(f(0', x), 1') -> f(g(f(x, x)), x) f(g(x), y) -> g(f(x, y)) Types: f :: 0':1':g -> 0':1':g -> 0':1':g 0' :: 0':1':g 1' :: 0':1':g g :: 0':1':g -> 0':1':g hole_0':1':g1_0 :: 0':1':g gen_0':1':g2_0 :: Nat -> 0':1':g Generator Equations: gen_0':1':g2_0(0) <=> 0' gen_0':1':g2_0(+(x, 1)) <=> g(gen_0':1':g2_0(x)) The following defined symbols remain to be analysed: f ---------------------------------------- (15) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (16) BOUNDS(n^1, INF)