/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) SlicingProof [LOWER BOUND(ID), 0 ms] (4) CpxTRS (5) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (6) typed CpxTrs (7) OrderProof [LOWER BOUND(ID), 0 ms] (8) typed CpxTrs (9) RewriteLemmaProof [LOWER BOUND(ID), 270 ms] (10) BEST (11) proven lower bound (12) LowerBoundPropagationProof [FINISHED, 0 ms] (13) BOUNDS(n^1, INF) (14) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: lt(0, s(X)) -> true lt(s(X), 0) -> false lt(s(X), s(Y)) -> lt(X, Y) append(nil, Y) -> Y append(add(N, X), Y) -> add(N, append(X, Y)) split(N, nil) -> pair(nil, nil) split(N, add(M, Y)) -> f_1(split(N, Y), N, M, Y) f_1(pair(X, Z), N, M, Y) -> f_2(lt(N, M), N, M, Y, X, Z) f_2(true, N, M, Y, X, Z) -> pair(X, add(M, Z)) f_2(false, N, M, Y, X, Z) -> pair(add(M, X), Z) qsort(nil) -> nil qsort(add(N, X)) -> f_3(split(N, X), N, X) f_3(pair(Y, Z), N, X) -> append(qsort(Y), add(X, qsort(Z))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: lt(0', s(X)) -> true lt(s(X), 0') -> false lt(s(X), s(Y)) -> lt(X, Y) append(nil, Y) -> Y append(add(N, X), Y) -> add(N, append(X, Y)) split(N, nil) -> pair(nil, nil) split(N, add(M, Y)) -> f_1(split(N, Y), N, M, Y) f_1(pair(X, Z), N, M, Y) -> f_2(lt(N, M), N, M, Y, X, Z) f_2(true, N, M, Y, X, Z) -> pair(X, add(M, Z)) f_2(false, N, M, Y, X, Z) -> pair(add(M, X), Z) qsort(nil) -> nil qsort(add(N, X)) -> f_3(split(N, X), N, X) f_3(pair(Y, Z), N, X) -> append(qsort(Y), add(X, qsort(Z))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) SlicingProof (LOWER BOUND(ID)) Sliced the following arguments: f_1/3 f_2/1 f_2/3 f_3/1 ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: lt(0', s(X)) -> true lt(s(X), 0') -> false lt(s(X), s(Y)) -> lt(X, Y) append(nil, Y) -> Y append(add(N, X), Y) -> add(N, append(X, Y)) split(N, nil) -> pair(nil, nil) split(N, add(M, Y)) -> f_1(split(N, Y), N, M) f_1(pair(X, Z), N, M) -> f_2(lt(N, M), M, X, Z) f_2(true, M, X, Z) -> pair(X, add(M, Z)) f_2(false, M, X, Z) -> pair(add(M, X), Z) qsort(nil) -> nil qsort(add(N, X)) -> f_3(split(N, X), X) f_3(pair(Y, Z), X) -> append(qsort(Y), add(X, qsort(Z))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (5) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (6) Obligation: TRS: Rules: lt(0', s(X)) -> true lt(s(X), 0') -> false lt(s(X), s(Y)) -> lt(X, Y) append(nil, Y) -> Y append(add(N, X), Y) -> add(N, append(X, Y)) split(N, nil) -> pair(nil, nil) split(N, add(M, Y)) -> f_1(split(N, Y), N, M) f_1(pair(X, Z), N, M) -> f_2(lt(N, M), M, X, Z) f_2(true, M, X, Z) -> pair(X, add(M, Z)) f_2(false, M, X, Z) -> pair(add(M, X), Z) qsort(nil) -> nil qsort(add(N, X)) -> f_3(split(N, X), X) f_3(pair(Y, Z), X) -> append(qsort(Y), add(X, qsort(Z))) Types: lt :: 0':s:nil:add -> 0':s:nil:add -> true:false 0' :: 0':s:nil:add s :: 0':s:nil:add -> 0':s:nil:add true :: true:false false :: true:false append :: 0':s:nil:add -> 0':s:nil:add -> 0':s:nil:add nil :: 0':s:nil:add add :: 0':s:nil:add -> 0':s:nil:add -> 0':s:nil:add split :: 0':s:nil:add -> 0':s:nil:add -> pair pair :: 0':s:nil:add -> 0':s:nil:add -> pair f_1 :: pair -> 0':s:nil:add -> 0':s:nil:add -> pair f_2 :: true:false -> 0':s:nil:add -> 0':s:nil:add -> 0':s:nil:add -> pair qsort :: 0':s:nil:add -> 0':s:nil:add f_3 :: pair -> 0':s:nil:add -> 0':s:nil:add hole_true:false1_0 :: true:false hole_0':s:nil:add2_0 :: 0':s:nil:add hole_pair3_0 :: pair gen_0':s:nil:add4_0 :: Nat -> 0':s:nil:add ---------------------------------------- (7) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: lt, append, split, qsort They will be analysed ascendingly in the following order: append < qsort split < qsort ---------------------------------------- (8) Obligation: TRS: Rules: lt(0', s(X)) -> true lt(s(X), 0') -> false lt(s(X), s(Y)) -> lt(X, Y) append(nil, Y) -> Y append(add(N, X), Y) -> add(N, append(X, Y)) split(N, nil) -> pair(nil, nil) split(N, add(M, Y)) -> f_1(split(N, Y), N, M) f_1(pair(X, Z), N, M) -> f_2(lt(N, M), M, X, Z) f_2(true, M, X, Z) -> pair(X, add(M, Z)) f_2(false, M, X, Z) -> pair(add(M, X), Z) qsort(nil) -> nil qsort(add(N, X)) -> f_3(split(N, X), X) f_3(pair(Y, Z), X) -> append(qsort(Y), add(X, qsort(Z))) Types: lt :: 0':s:nil:add -> 0':s:nil:add -> true:false 0' :: 0':s:nil:add s :: 0':s:nil:add -> 0':s:nil:add true :: true:false false :: true:false append :: 0':s:nil:add -> 0':s:nil:add -> 0':s:nil:add nil :: 0':s:nil:add add :: 0':s:nil:add -> 0':s:nil:add -> 0':s:nil:add split :: 0':s:nil:add -> 0':s:nil:add -> pair pair :: 0':s:nil:add -> 0':s:nil:add -> pair f_1 :: pair -> 0':s:nil:add -> 0':s:nil:add -> pair f_2 :: true:false -> 0':s:nil:add -> 0':s:nil:add -> 0':s:nil:add -> pair qsort :: 0':s:nil:add -> 0':s:nil:add f_3 :: pair -> 0':s:nil:add -> 0':s:nil:add hole_true:false1_0 :: true:false hole_0':s:nil:add2_0 :: 0':s:nil:add hole_pair3_0 :: pair gen_0':s:nil:add4_0 :: Nat -> 0':s:nil:add Generator Equations: gen_0':s:nil:add4_0(0) <=> 0' gen_0':s:nil:add4_0(+(x, 1)) <=> s(gen_0':s:nil:add4_0(x)) The following defined symbols remain to be analysed: lt, append, split, qsort They will be analysed ascendingly in the following order: append < qsort split < qsort ---------------------------------------- (9) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: lt(gen_0':s:nil:add4_0(n6_0), gen_0':s:nil:add4_0(+(1, n6_0))) -> true, rt in Omega(1 + n6_0) Induction Base: lt(gen_0':s:nil:add4_0(0), gen_0':s:nil:add4_0(+(1, 0))) ->_R^Omega(1) true Induction Step: lt(gen_0':s:nil:add4_0(+(n6_0, 1)), gen_0':s:nil:add4_0(+(1, +(n6_0, 1)))) ->_R^Omega(1) lt(gen_0':s:nil:add4_0(n6_0), gen_0':s:nil:add4_0(+(1, n6_0))) ->_IH true We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (10) Complex Obligation (BEST) ---------------------------------------- (11) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: lt(0', s(X)) -> true lt(s(X), 0') -> false lt(s(X), s(Y)) -> lt(X, Y) append(nil, Y) -> Y append(add(N, X), Y) -> add(N, append(X, Y)) split(N, nil) -> pair(nil, nil) split(N, add(M, Y)) -> f_1(split(N, Y), N, M) f_1(pair(X, Z), N, M) -> f_2(lt(N, M), M, X, Z) f_2(true, M, X, Z) -> pair(X, add(M, Z)) f_2(false, M, X, Z) -> pair(add(M, X), Z) qsort(nil) -> nil qsort(add(N, X)) -> f_3(split(N, X), X) f_3(pair(Y, Z), X) -> append(qsort(Y), add(X, qsort(Z))) Types: lt :: 0':s:nil:add -> 0':s:nil:add -> true:false 0' :: 0':s:nil:add s :: 0':s:nil:add -> 0':s:nil:add true :: true:false false :: true:false append :: 0':s:nil:add -> 0':s:nil:add -> 0':s:nil:add nil :: 0':s:nil:add add :: 0':s:nil:add -> 0':s:nil:add -> 0':s:nil:add split :: 0':s:nil:add -> 0':s:nil:add -> pair pair :: 0':s:nil:add -> 0':s:nil:add -> pair f_1 :: pair -> 0':s:nil:add -> 0':s:nil:add -> pair f_2 :: true:false -> 0':s:nil:add -> 0':s:nil:add -> 0':s:nil:add -> pair qsort :: 0':s:nil:add -> 0':s:nil:add f_3 :: pair -> 0':s:nil:add -> 0':s:nil:add hole_true:false1_0 :: true:false hole_0':s:nil:add2_0 :: 0':s:nil:add hole_pair3_0 :: pair gen_0':s:nil:add4_0 :: Nat -> 0':s:nil:add Generator Equations: gen_0':s:nil:add4_0(0) <=> 0' gen_0':s:nil:add4_0(+(x, 1)) <=> s(gen_0':s:nil:add4_0(x)) The following defined symbols remain to be analysed: lt, append, split, qsort They will be analysed ascendingly in the following order: append < qsort split < qsort ---------------------------------------- (12) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (13) BOUNDS(n^1, INF) ---------------------------------------- (14) Obligation: TRS: Rules: lt(0', s(X)) -> true lt(s(X), 0') -> false lt(s(X), s(Y)) -> lt(X, Y) append(nil, Y) -> Y append(add(N, X), Y) -> add(N, append(X, Y)) split(N, nil) -> pair(nil, nil) split(N, add(M, Y)) -> f_1(split(N, Y), N, M) f_1(pair(X, Z), N, M) -> f_2(lt(N, M), M, X, Z) f_2(true, M, X, Z) -> pair(X, add(M, Z)) f_2(false, M, X, Z) -> pair(add(M, X), Z) qsort(nil) -> nil qsort(add(N, X)) -> f_3(split(N, X), X) f_3(pair(Y, Z), X) -> append(qsort(Y), add(X, qsort(Z))) Types: lt :: 0':s:nil:add -> 0':s:nil:add -> true:false 0' :: 0':s:nil:add s :: 0':s:nil:add -> 0':s:nil:add true :: true:false false :: true:false append :: 0':s:nil:add -> 0':s:nil:add -> 0':s:nil:add nil :: 0':s:nil:add add :: 0':s:nil:add -> 0':s:nil:add -> 0':s:nil:add split :: 0':s:nil:add -> 0':s:nil:add -> pair pair :: 0':s:nil:add -> 0':s:nil:add -> pair f_1 :: pair -> 0':s:nil:add -> 0':s:nil:add -> pair f_2 :: true:false -> 0':s:nil:add -> 0':s:nil:add -> 0':s:nil:add -> pair qsort :: 0':s:nil:add -> 0':s:nil:add f_3 :: pair -> 0':s:nil:add -> 0':s:nil:add hole_true:false1_0 :: true:false hole_0':s:nil:add2_0 :: 0':s:nil:add hole_pair3_0 :: pair gen_0':s:nil:add4_0 :: Nat -> 0':s:nil:add Lemmas: lt(gen_0':s:nil:add4_0(n6_0), gen_0':s:nil:add4_0(+(1, n6_0))) -> true, rt in Omega(1 + n6_0) Generator Equations: gen_0':s:nil:add4_0(0) <=> 0' gen_0':s:nil:add4_0(+(x, 1)) <=> s(gen_0':s:nil:add4_0(x)) The following defined symbols remain to be analysed: append, split, qsort They will be analysed ascendingly in the following order: append < qsort split < qsort