/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (2) TRS for Loop Detection (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (4) BEST (5) proven lower bound (6) LowerBoundPropagationProof [FINISHED, 0 ms] (7) BOUNDS(n^1, INF) (8) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: plus(x, y) -> ifPlus(isZero(x), x, inc(y)) ifPlus(true, x, y) -> p(y) ifPlus(false, x, y) -> plus(p(x), y) times(x, y) -> timesIter(0, x, y, 0) timesIter(i, x, y, z) -> ifTimes(ge(i, x), i, x, y, z) ifTimes(true, i, x, y, z) -> z ifTimes(false, i, x, y, z) -> timesIter(inc(i), x, y, plus(z, y)) isZero(0) -> true isZero(s(0)) -> false isZero(s(s(x))) -> isZero(s(x)) inc(0) -> s(0) inc(s(x)) -> s(inc(x)) inc(x) -> s(x) p(0) -> 0 p(s(x)) -> x p(s(s(x))) -> s(p(s(x))) ge(x, 0) -> true ge(0, s(y)) -> false ge(s(x), s(y)) -> ge(x, y) f0(0, y, x) -> f1(x, y, x) f1(x, y, z) -> f2(x, y, z) f2(x, 1, z) -> f0(x, z, z) f0(x, y, z) -> d f1(x, y, z) -> c S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (2) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: plus(x, y) -> ifPlus(isZero(x), x, inc(y)) ifPlus(true, x, y) -> p(y) ifPlus(false, x, y) -> plus(p(x), y) times(x, y) -> timesIter(0, x, y, 0) timesIter(i, x, y, z) -> ifTimes(ge(i, x), i, x, y, z) ifTimes(true, i, x, y, z) -> z ifTimes(false, i, x, y, z) -> timesIter(inc(i), x, y, plus(z, y)) isZero(0) -> true isZero(s(0)) -> false isZero(s(s(x))) -> isZero(s(x)) inc(0) -> s(0) inc(s(x)) -> s(inc(x)) inc(x) -> s(x) p(0) -> 0 p(s(x)) -> x p(s(s(x))) -> s(p(s(x))) ge(x, 0) -> true ge(0, s(y)) -> false ge(s(x), s(y)) -> ge(x, y) f0(0, y, x) -> f1(x, y, x) f1(x, y, z) -> f2(x, y, z) f2(x, 1, z) -> f0(x, z, z) f0(x, y, z) -> d f1(x, y, z) -> c S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence isZero(s(s(x))) ->^+ isZero(s(x)) gives rise to a decreasing loop by considering the right hand sides subterm at position []. The pumping substitution is [x / s(x)]. The result substitution is [ ]. ---------------------------------------- (4) Complex Obligation (BEST) ---------------------------------------- (5) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: plus(x, y) -> ifPlus(isZero(x), x, inc(y)) ifPlus(true, x, y) -> p(y) ifPlus(false, x, y) -> plus(p(x), y) times(x, y) -> timesIter(0, x, y, 0) timesIter(i, x, y, z) -> ifTimes(ge(i, x), i, x, y, z) ifTimes(true, i, x, y, z) -> z ifTimes(false, i, x, y, z) -> timesIter(inc(i), x, y, plus(z, y)) isZero(0) -> true isZero(s(0)) -> false isZero(s(s(x))) -> isZero(s(x)) inc(0) -> s(0) inc(s(x)) -> s(inc(x)) inc(x) -> s(x) p(0) -> 0 p(s(x)) -> x p(s(s(x))) -> s(p(s(x))) ge(x, 0) -> true ge(0, s(y)) -> false ge(s(x), s(y)) -> ge(x, y) f0(0, y, x) -> f1(x, y, x) f1(x, y, z) -> f2(x, y, z) f2(x, 1, z) -> f0(x, z, z) f0(x, y, z) -> d f1(x, y, z) -> c S is empty. Rewrite Strategy: FULL ---------------------------------------- (6) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (7) BOUNDS(n^1, INF) ---------------------------------------- (8) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: plus(x, y) -> ifPlus(isZero(x), x, inc(y)) ifPlus(true, x, y) -> p(y) ifPlus(false, x, y) -> plus(p(x), y) times(x, y) -> timesIter(0, x, y, 0) timesIter(i, x, y, z) -> ifTimes(ge(i, x), i, x, y, z) ifTimes(true, i, x, y, z) -> z ifTimes(false, i, x, y, z) -> timesIter(inc(i), x, y, plus(z, y)) isZero(0) -> true isZero(s(0)) -> false isZero(s(s(x))) -> isZero(s(x)) inc(0) -> s(0) inc(s(x)) -> s(inc(x)) inc(x) -> s(x) p(0) -> 0 p(s(x)) -> x p(s(s(x))) -> s(p(s(x))) ge(x, 0) -> true ge(0, s(y)) -> false ge(s(x), s(y)) -> ge(x, y) f0(0, y, x) -> f1(x, y, x) f1(x, y, z) -> f2(x, y, z) f2(x, 1, z) -> f0(x, z, z) f0(x, y, z) -> d f1(x, y, z) -> c S is empty. Rewrite Strategy: FULL