/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxWeightedTrs (5) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxTypedWeightedTrs (7) CompletionProof [UPPER BOUND(ID), 0 ms] (8) CpxTypedWeightedCompleteTrs (9) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxTypedWeightedCompleteTrs (11) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (12) CpxRNTS (13) InliningProof [UPPER BOUND(ID), 200 ms] (14) CpxRNTS (15) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxRNTS (17) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (18) CpxRNTS (19) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (20) CpxRNTS (21) IntTrsBoundProof [UPPER BOUND(ID), 219 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 66 ms] (24) CpxRNTS (25) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 575 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 830 ms] (30) CpxRNTS (31) FinalProof [FINISHED, 0 ms] (32) BOUNDS(1, n^1) (33) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (34) CpxTRS (35) SlicingProof [LOWER BOUND(ID), 0 ms] (36) CpxTRS (37) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (38) typed CpxTrs (39) OrderProof [LOWER BOUND(ID), 0 ms] (40) typed CpxTrs (41) RewriteLemmaProof [LOWER BOUND(ID), 204 ms] (42) proven lower bound (43) LowerBoundPropagationProof [FINISHED, 0 ms] (44) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: or(true, y) -> true or(x, true) -> true or(false, false) -> false mem(x, nil) -> false mem(x, set(y)) -> =(x, y) mem(x, union(y, z)) -> or(mem(x, y), mem(x, z)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. The duplicating contexts are: mem([], union(y, z)) The defined contexts are: or([], x1) or(x0, []) As the TRS is an overlay system and the defined contexts and the duplicating contexts don't overlap, we have rc = irc. ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: or(true, y) -> true or(x, true) -> true or(false, false) -> false mem(x, nil) -> false mem(x, set(y)) -> =(x, y) mem(x, union(y, z)) -> or(mem(x, y), mem(x, z)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: or(true, y) -> true [1] or(x, true) -> true [1] or(false, false) -> false [1] mem(x, nil) -> false [1] mem(x, set(y)) -> =(x, y) [1] mem(x, union(y, z)) -> or(mem(x, y), mem(x, z)) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (5) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: or(true, y) -> true [1] or(x, true) -> true [1] or(false, false) -> false [1] mem(x, nil) -> false [1] mem(x, set(y)) -> =(x, y) [1] mem(x, union(y, z)) -> or(mem(x, y), mem(x, z)) [1] The TRS has the following type information: or :: true:false:= -> true:false:= -> true:false:= true :: true:false:= false :: true:false:= mem :: a -> nil:set:union -> true:false:= nil :: nil:set:union set :: b -> nil:set:union = :: a -> b -> true:false:= union :: nil:set:union -> nil:set:union -> nil:set:union Rewrite Strategy: INNERMOST ---------------------------------------- (7) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: none (c) The following functions are completely defined: mem_2 or_2 Due to the following rules being added: or(v0, v1) -> null_or [0] And the following fresh constants: null_or, const, const1 ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: or(true, y) -> true [1] or(x, true) -> true [1] or(false, false) -> false [1] mem(x, nil) -> false [1] mem(x, set(y)) -> =(x, y) [1] mem(x, union(y, z)) -> or(mem(x, y), mem(x, z)) [1] or(v0, v1) -> null_or [0] The TRS has the following type information: or :: true:false:=:null_or -> true:false:=:null_or -> true:false:=:null_or true :: true:false:=:null_or false :: true:false:=:null_or mem :: a -> nil:set:union -> true:false:=:null_or nil :: nil:set:union set :: b -> nil:set:union = :: a -> b -> true:false:=:null_or union :: nil:set:union -> nil:set:union -> nil:set:union null_or :: true:false:=:null_or const :: a const1 :: b Rewrite Strategy: INNERMOST ---------------------------------------- (9) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: or(true, y) -> true [1] or(x, true) -> true [1] or(false, false) -> false [1] mem(x, nil) -> false [1] mem(x, set(y)) -> =(x, y) [1] mem(x, union(nil, nil)) -> or(false, false) [3] mem(x, union(nil, set(y1))) -> or(false, =(x, y1)) [3] mem(x, union(nil, union(y2, z''))) -> or(false, or(mem(x, y2), mem(x, z''))) [3] mem(x, union(set(y'), nil)) -> or(=(x, y'), false) [3] mem(x, union(set(y'), set(y3))) -> or(=(x, y'), =(x, y3)) [3] mem(x, union(set(y'), union(y4, z1))) -> or(=(x, y'), or(mem(x, y4), mem(x, z1))) [3] mem(x, union(union(y'', z'), nil)) -> or(or(mem(x, y''), mem(x, z')), false) [3] mem(x, union(union(y'', z'), set(y5))) -> or(or(mem(x, y''), mem(x, z')), =(x, y5)) [3] mem(x, union(union(y'', z'), union(y6, z2))) -> or(or(mem(x, y''), mem(x, z')), or(mem(x, y6), mem(x, z2))) [3] or(v0, v1) -> null_or [0] The TRS has the following type information: or :: true:false:=:null_or -> true:false:=:null_or -> true:false:=:null_or true :: true:false:=:null_or false :: true:false:=:null_or mem :: a -> nil:set:union -> true:false:=:null_or nil :: nil:set:union set :: b -> nil:set:union = :: a -> b -> true:false:=:null_or union :: nil:set:union -> nil:set:union -> nil:set:union null_or :: true:false:=:null_or const :: a const1 :: b Rewrite Strategy: INNERMOST ---------------------------------------- (11) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: true => 1 false => 0 nil => 0 null_or => 0 const => 0 const1 => 0 ---------------------------------------- (12) Obligation: Complexity RNTS consisting of the following rules: mem(z, z3) -{ 3 }-> or(or(mem(x, y''), mem(x, z')), or(mem(x, y6), mem(x, z2))) :|: x >= 0, z' >= 0, y6 >= 0, y'' >= 0, z = x, z3 = 1 + (1 + y'' + z') + (1 + y6 + z2), z2 >= 0 mem(z, z3) -{ 3 }-> or(or(mem(x, y''), mem(x, z')), 0) :|: z3 = 1 + (1 + y'' + z') + 0, x >= 0, z' >= 0, y'' >= 0, z = x mem(z, z3) -{ 3 }-> or(or(mem(x, y''), mem(x, z')), 1 + x + y5) :|: y5 >= 0, z3 = 1 + (1 + y'' + z') + (1 + y5), x >= 0, z' >= 0, y'' >= 0, z = x mem(z, z3) -{ 3 }-> or(0, or(mem(x, y2), mem(x, z''))) :|: z'' >= 0, x >= 0, z3 = 1 + 0 + (1 + y2 + z''), y2 >= 0, z = x mem(z, z3) -{ 3 }-> or(0, 0) :|: x >= 0, z3 = 1 + 0 + 0, z = x mem(z, z3) -{ 3 }-> or(0, 1 + x + y1) :|: y1 >= 0, z3 = 1 + 0 + (1 + y1), x >= 0, z = x mem(z, z3) -{ 3 }-> or(1 + x + y', or(mem(x, y4), mem(x, z1))) :|: z1 >= 0, z3 = 1 + (1 + y') + (1 + y4 + z1), x >= 0, y' >= 0, y4 >= 0, z = x mem(z, z3) -{ 3 }-> or(1 + x + y', 0) :|: z3 = 1 + (1 + y') + 0, x >= 0, y' >= 0, z = x mem(z, z3) -{ 3 }-> or(1 + x + y', 1 + x + y3) :|: x >= 0, y' >= 0, y3 >= 0, z3 = 1 + (1 + y') + (1 + y3), z = x mem(z, z3) -{ 1 }-> 0 :|: z3 = 0, x >= 0, z = x mem(z, z3) -{ 1 }-> 1 + x + y :|: z3 = 1 + y, x >= 0, y >= 0, z = x or(z, z3) -{ 1 }-> 1 :|: z = 1, z3 = y, y >= 0 or(z, z3) -{ 1 }-> 1 :|: x >= 0, z3 = 1, z = x or(z, z3) -{ 1 }-> 0 :|: z3 = 0, z = 0 or(z, z3) -{ 0 }-> 0 :|: z3 = v1, v0 >= 0, v1 >= 0, z = v0 ---------------------------------------- (13) InliningProof (UPPER BOUND(ID)) Inlined the following terminating rules on right-hand sides where appropriate: or(z, z3) -{ 1 }-> 1 :|: z = 1, z3 = y, y >= 0 or(z, z3) -{ 1 }-> 1 :|: x >= 0, z3 = 1, z = x or(z, z3) -{ 0 }-> 0 :|: z3 = v1, v0 >= 0, v1 >= 0, z = v0 or(z, z3) -{ 1 }-> 0 :|: z3 = 0, z = 0 ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: mem(z, z3) -{ 3 }-> or(or(mem(x, y''), mem(x, z')), or(mem(x, y6), mem(x, z2))) :|: x >= 0, z' >= 0, y6 >= 0, y'' >= 0, z = x, z3 = 1 + (1 + y'' + z') + (1 + y6 + z2), z2 >= 0 mem(z, z3) -{ 3 }-> or(or(mem(x, y''), mem(x, z')), 0) :|: z3 = 1 + (1 + y'' + z') + 0, x >= 0, z' >= 0, y'' >= 0, z = x mem(z, z3) -{ 3 }-> or(or(mem(x, y''), mem(x, z')), 1 + x + y5) :|: y5 >= 0, z3 = 1 + (1 + y'' + z') + (1 + y5), x >= 0, z' >= 0, y'' >= 0, z = x mem(z, z3) -{ 3 }-> or(0, or(mem(x, y2), mem(x, z''))) :|: z'' >= 0, x >= 0, z3 = 1 + 0 + (1 + y2 + z''), y2 >= 0, z = x mem(z, z3) -{ 3 }-> or(1 + x + y', or(mem(x, y4), mem(x, z1))) :|: z1 >= 0, z3 = 1 + (1 + y') + (1 + y4 + z1), x >= 0, y' >= 0, y4 >= 0, z = x mem(z, z3) -{ 4 }-> 1 :|: y1 >= 0, z3 = 1 + 0 + (1 + y1), x >= 0, z = x, x' >= 0, 1 + x + y1 = 1, 0 = x' mem(z, z3) -{ 4 }-> 1 :|: z3 = 1 + (1 + y') + 0, x >= 0, y' >= 0, z = x, 1 + x + y' = 1, 0 = y, y >= 0 mem(z, z3) -{ 4 }-> 1 :|: x >= 0, y' >= 0, y3 >= 0, z3 = 1 + (1 + y') + (1 + y3), z = x, 1 + x + y' = 1, 1 + x + y3 = y, y >= 0 mem(z, z3) -{ 4 }-> 1 :|: x >= 0, y' >= 0, y3 >= 0, z3 = 1 + (1 + y') + (1 + y3), z = x, x' >= 0, 1 + x + y3 = 1, 1 + x + y' = x' mem(z, z3) -{ 1 }-> 0 :|: z3 = 0, x >= 0, z = x mem(z, z3) -{ 3 }-> 0 :|: x >= 0, z3 = 1 + 0 + 0, z = x, 0 = v1, v0 >= 0, v1 >= 0, 0 = v0 mem(z, z3) -{ 4 }-> 0 :|: x >= 0, z3 = 1 + 0 + 0, z = x, 0 = 0 mem(z, z3) -{ 3 }-> 0 :|: y1 >= 0, z3 = 1 + 0 + (1 + y1), x >= 0, z = x, 1 + x + y1 = v1, v0 >= 0, v1 >= 0, 0 = v0 mem(z, z3) -{ 3 }-> 0 :|: z3 = 1 + (1 + y') + 0, x >= 0, y' >= 0, z = x, 0 = v1, v0 >= 0, v1 >= 0, 1 + x + y' = v0 mem(z, z3) -{ 3 }-> 0 :|: x >= 0, y' >= 0, y3 >= 0, z3 = 1 + (1 + y') + (1 + y3), z = x, 1 + x + y3 = v1, v0 >= 0, v1 >= 0, 1 + x + y' = v0 mem(z, z3) -{ 1 }-> 1 + x + y :|: z3 = 1 + y, x >= 0, y >= 0, z = x or(z, z3) -{ 1 }-> 1 :|: z = 1, z3 = y, y >= 0 or(z, z3) -{ 1 }-> 1 :|: x >= 0, z3 = 1, z = x or(z, z3) -{ 1 }-> 0 :|: z3 = 0, z = 0 or(z, z3) -{ 0 }-> 0 :|: z3 = v1, v0 >= 0, v1 >= 0, z = v0 ---------------------------------------- (15) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: mem(z, z3) -{ 3 }-> or(or(mem(z, y''), mem(z, z')), or(mem(z, y6), mem(z, z2))) :|: z >= 0, z' >= 0, y6 >= 0, y'' >= 0, z3 = 1 + (1 + y'' + z') + (1 + y6 + z2), z2 >= 0 mem(z, z3) -{ 3 }-> or(or(mem(z, y''), mem(z, z')), 0) :|: z3 = 1 + (1 + y'' + z') + 0, z >= 0, z' >= 0, y'' >= 0 mem(z, z3) -{ 3 }-> or(or(mem(z, y''), mem(z, z')), 1 + z + y5) :|: y5 >= 0, z3 = 1 + (1 + y'' + z') + (1 + y5), z >= 0, z' >= 0, y'' >= 0 mem(z, z3) -{ 3 }-> or(0, or(mem(z, y2), mem(z, z''))) :|: z'' >= 0, z >= 0, z3 = 1 + 0 + (1 + y2 + z''), y2 >= 0 mem(z, z3) -{ 3 }-> or(1 + z + y', or(mem(z, y4), mem(z, z1))) :|: z1 >= 0, z3 = 1 + (1 + y') + (1 + y4 + z1), z >= 0, y' >= 0, y4 >= 0 mem(z, z3) -{ 4 }-> 1 :|: z3 - 2 >= 0, z >= 0, x' >= 0, 1 + z + (z3 - 2) = 1, 0 = x' mem(z, z3) -{ 4 }-> 1 :|: z >= 0, z3 - 2 >= 0, 1 + z + (z3 - 2) = 1, 0 = y, y >= 0 mem(z, z3) -{ 4 }-> 1 :|: z >= 0, y' >= 0, y3 >= 0, z3 = 1 + (1 + y') + (1 + y3), 1 + z + y' = 1, 1 + z + y3 = y, y >= 0 mem(z, z3) -{ 4 }-> 1 :|: z >= 0, y' >= 0, y3 >= 0, z3 = 1 + (1 + y') + (1 + y3), x' >= 0, 1 + z + y3 = 1, 1 + z + y' = x' mem(z, z3) -{ 1 }-> 0 :|: z3 = 0, z >= 0 mem(z, z3) -{ 3 }-> 0 :|: z >= 0, z3 = 1 + 0 + 0, 0 = v1, v0 >= 0, v1 >= 0, 0 = v0 mem(z, z3) -{ 4 }-> 0 :|: z >= 0, z3 = 1 + 0 + 0, 0 = 0 mem(z, z3) -{ 3 }-> 0 :|: z3 - 2 >= 0, z >= 0, 1 + z + (z3 - 2) = v1, v0 >= 0, v1 >= 0, 0 = v0 mem(z, z3) -{ 3 }-> 0 :|: z >= 0, z3 - 2 >= 0, 0 = v1, v0 >= 0, v1 >= 0, 1 + z + (z3 - 2) = v0 mem(z, z3) -{ 3 }-> 0 :|: z >= 0, y' >= 0, y3 >= 0, z3 = 1 + (1 + y') + (1 + y3), 1 + z + y3 = v1, v0 >= 0, v1 >= 0, 1 + z + y' = v0 mem(z, z3) -{ 1 }-> 1 + z + (z3 - 1) :|: z >= 0, z3 - 1 >= 0 or(z, z3) -{ 1 }-> 1 :|: z = 1, z3 >= 0 or(z, z3) -{ 1 }-> 1 :|: z >= 0, z3 = 1 or(z, z3) -{ 1 }-> 0 :|: z3 = 0, z = 0 or(z, z3) -{ 0 }-> 0 :|: z >= 0, z3 >= 0 ---------------------------------------- (17) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { or } { mem } ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: mem(z, z3) -{ 3 }-> or(or(mem(z, y''), mem(z, z')), or(mem(z, y6), mem(z, z2))) :|: z >= 0, z' >= 0, y6 >= 0, y'' >= 0, z3 = 1 + (1 + y'' + z') + (1 + y6 + z2), z2 >= 0 mem(z, z3) -{ 3 }-> or(or(mem(z, y''), mem(z, z')), 0) :|: z3 = 1 + (1 + y'' + z') + 0, z >= 0, z' >= 0, y'' >= 0 mem(z, z3) -{ 3 }-> or(or(mem(z, y''), mem(z, z')), 1 + z + y5) :|: y5 >= 0, z3 = 1 + (1 + y'' + z') + (1 + y5), z >= 0, z' >= 0, y'' >= 0 mem(z, z3) -{ 3 }-> or(0, or(mem(z, y2), mem(z, z''))) :|: z'' >= 0, z >= 0, z3 = 1 + 0 + (1 + y2 + z''), y2 >= 0 mem(z, z3) -{ 3 }-> or(1 + z + y', or(mem(z, y4), mem(z, z1))) :|: z1 >= 0, z3 = 1 + (1 + y') + (1 + y4 + z1), z >= 0, y' >= 0, y4 >= 0 mem(z, z3) -{ 4 }-> 1 :|: z3 - 2 >= 0, z >= 0, x' >= 0, 1 + z + (z3 - 2) = 1, 0 = x' mem(z, z3) -{ 4 }-> 1 :|: z >= 0, z3 - 2 >= 0, 1 + z + (z3 - 2) = 1, 0 = y, y >= 0 mem(z, z3) -{ 4 }-> 1 :|: z >= 0, y' >= 0, y3 >= 0, z3 = 1 + (1 + y') + (1 + y3), 1 + z + y' = 1, 1 + z + y3 = y, y >= 0 mem(z, z3) -{ 4 }-> 1 :|: z >= 0, y' >= 0, y3 >= 0, z3 = 1 + (1 + y') + (1 + y3), x' >= 0, 1 + z + y3 = 1, 1 + z + y' = x' mem(z, z3) -{ 1 }-> 0 :|: z3 = 0, z >= 0 mem(z, z3) -{ 3 }-> 0 :|: z >= 0, z3 = 1 + 0 + 0, 0 = v1, v0 >= 0, v1 >= 0, 0 = v0 mem(z, z3) -{ 4 }-> 0 :|: z >= 0, z3 = 1 + 0 + 0, 0 = 0 mem(z, z3) -{ 3 }-> 0 :|: z3 - 2 >= 0, z >= 0, 1 + z + (z3 - 2) = v1, v0 >= 0, v1 >= 0, 0 = v0 mem(z, z3) -{ 3 }-> 0 :|: z >= 0, z3 - 2 >= 0, 0 = v1, v0 >= 0, v1 >= 0, 1 + z + (z3 - 2) = v0 mem(z, z3) -{ 3 }-> 0 :|: z >= 0, y' >= 0, y3 >= 0, z3 = 1 + (1 + y') + (1 + y3), 1 + z + y3 = v1, v0 >= 0, v1 >= 0, 1 + z + y' = v0 mem(z, z3) -{ 1 }-> 1 + z + (z3 - 1) :|: z >= 0, z3 - 1 >= 0 or(z, z3) -{ 1 }-> 1 :|: z = 1, z3 >= 0 or(z, z3) -{ 1 }-> 1 :|: z >= 0, z3 = 1 or(z, z3) -{ 1 }-> 0 :|: z3 = 0, z = 0 or(z, z3) -{ 0 }-> 0 :|: z >= 0, z3 >= 0 Function symbols to be analyzed: {or}, {mem} ---------------------------------------- (19) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: mem(z, z3) -{ 3 }-> or(or(mem(z, y''), mem(z, z')), or(mem(z, y6), mem(z, z2))) :|: z >= 0, z' >= 0, y6 >= 0, y'' >= 0, z3 = 1 + (1 + y'' + z') + (1 + y6 + z2), z2 >= 0 mem(z, z3) -{ 3 }-> or(or(mem(z, y''), mem(z, z')), 0) :|: z3 = 1 + (1 + y'' + z') + 0, z >= 0, z' >= 0, y'' >= 0 mem(z, z3) -{ 3 }-> or(or(mem(z, y''), mem(z, z')), 1 + z + y5) :|: y5 >= 0, z3 = 1 + (1 + y'' + z') + (1 + y5), z >= 0, z' >= 0, y'' >= 0 mem(z, z3) -{ 3 }-> or(0, or(mem(z, y2), mem(z, z''))) :|: z'' >= 0, z >= 0, z3 = 1 + 0 + (1 + y2 + z''), y2 >= 0 mem(z, z3) -{ 3 }-> or(1 + z + y', or(mem(z, y4), mem(z, z1))) :|: z1 >= 0, z3 = 1 + (1 + y') + (1 + y4 + z1), z >= 0, y' >= 0, y4 >= 0 mem(z, z3) -{ 4 }-> 1 :|: z3 - 2 >= 0, z >= 0, x' >= 0, 1 + z + (z3 - 2) = 1, 0 = x' mem(z, z3) -{ 4 }-> 1 :|: z >= 0, z3 - 2 >= 0, 1 + z + (z3 - 2) = 1, 0 = y, y >= 0 mem(z, z3) -{ 4 }-> 1 :|: z >= 0, y' >= 0, y3 >= 0, z3 = 1 + (1 + y') + (1 + y3), 1 + z + y' = 1, 1 + z + y3 = y, y >= 0 mem(z, z3) -{ 4 }-> 1 :|: z >= 0, y' >= 0, y3 >= 0, z3 = 1 + (1 + y') + (1 + y3), x' >= 0, 1 + z + y3 = 1, 1 + z + y' = x' mem(z, z3) -{ 1 }-> 0 :|: z3 = 0, z >= 0 mem(z, z3) -{ 3 }-> 0 :|: z >= 0, z3 = 1 + 0 + 0, 0 = v1, v0 >= 0, v1 >= 0, 0 = v0 mem(z, z3) -{ 4 }-> 0 :|: z >= 0, z3 = 1 + 0 + 0, 0 = 0 mem(z, z3) -{ 3 }-> 0 :|: z3 - 2 >= 0, z >= 0, 1 + z + (z3 - 2) = v1, v0 >= 0, v1 >= 0, 0 = v0 mem(z, z3) -{ 3 }-> 0 :|: z >= 0, z3 - 2 >= 0, 0 = v1, v0 >= 0, v1 >= 0, 1 + z + (z3 - 2) = v0 mem(z, z3) -{ 3 }-> 0 :|: z >= 0, y' >= 0, y3 >= 0, z3 = 1 + (1 + y') + (1 + y3), 1 + z + y3 = v1, v0 >= 0, v1 >= 0, 1 + z + y' = v0 mem(z, z3) -{ 1 }-> 1 + z + (z3 - 1) :|: z >= 0, z3 - 1 >= 0 or(z, z3) -{ 1 }-> 1 :|: z = 1, z3 >= 0 or(z, z3) -{ 1 }-> 1 :|: z >= 0, z3 = 1 or(z, z3) -{ 1 }-> 0 :|: z3 = 0, z = 0 or(z, z3) -{ 0 }-> 0 :|: z >= 0, z3 >= 0 Function symbols to be analyzed: {or}, {mem} ---------------------------------------- (21) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: or after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: mem(z, z3) -{ 3 }-> or(or(mem(z, y''), mem(z, z')), or(mem(z, y6), mem(z, z2))) :|: z >= 0, z' >= 0, y6 >= 0, y'' >= 0, z3 = 1 + (1 + y'' + z') + (1 + y6 + z2), z2 >= 0 mem(z, z3) -{ 3 }-> or(or(mem(z, y''), mem(z, z')), 0) :|: z3 = 1 + (1 + y'' + z') + 0, z >= 0, z' >= 0, y'' >= 0 mem(z, z3) -{ 3 }-> or(or(mem(z, y''), mem(z, z')), 1 + z + y5) :|: y5 >= 0, z3 = 1 + (1 + y'' + z') + (1 + y5), z >= 0, z' >= 0, y'' >= 0 mem(z, z3) -{ 3 }-> or(0, or(mem(z, y2), mem(z, z''))) :|: z'' >= 0, z >= 0, z3 = 1 + 0 + (1 + y2 + z''), y2 >= 0 mem(z, z3) -{ 3 }-> or(1 + z + y', or(mem(z, y4), mem(z, z1))) :|: z1 >= 0, z3 = 1 + (1 + y') + (1 + y4 + z1), z >= 0, y' >= 0, y4 >= 0 mem(z, z3) -{ 4 }-> 1 :|: z3 - 2 >= 0, z >= 0, x' >= 0, 1 + z + (z3 - 2) = 1, 0 = x' mem(z, z3) -{ 4 }-> 1 :|: z >= 0, z3 - 2 >= 0, 1 + z + (z3 - 2) = 1, 0 = y, y >= 0 mem(z, z3) -{ 4 }-> 1 :|: z >= 0, y' >= 0, y3 >= 0, z3 = 1 + (1 + y') + (1 + y3), 1 + z + y' = 1, 1 + z + y3 = y, y >= 0 mem(z, z3) -{ 4 }-> 1 :|: z >= 0, y' >= 0, y3 >= 0, z3 = 1 + (1 + y') + (1 + y3), x' >= 0, 1 + z + y3 = 1, 1 + z + y' = x' mem(z, z3) -{ 1 }-> 0 :|: z3 = 0, z >= 0 mem(z, z3) -{ 3 }-> 0 :|: z >= 0, z3 = 1 + 0 + 0, 0 = v1, v0 >= 0, v1 >= 0, 0 = v0 mem(z, z3) -{ 4 }-> 0 :|: z >= 0, z3 = 1 + 0 + 0, 0 = 0 mem(z, z3) -{ 3 }-> 0 :|: z3 - 2 >= 0, z >= 0, 1 + z + (z3 - 2) = v1, v0 >= 0, v1 >= 0, 0 = v0 mem(z, z3) -{ 3 }-> 0 :|: z >= 0, z3 - 2 >= 0, 0 = v1, v0 >= 0, v1 >= 0, 1 + z + (z3 - 2) = v0 mem(z, z3) -{ 3 }-> 0 :|: z >= 0, y' >= 0, y3 >= 0, z3 = 1 + (1 + y') + (1 + y3), 1 + z + y3 = v1, v0 >= 0, v1 >= 0, 1 + z + y' = v0 mem(z, z3) -{ 1 }-> 1 + z + (z3 - 1) :|: z >= 0, z3 - 1 >= 0 or(z, z3) -{ 1 }-> 1 :|: z = 1, z3 >= 0 or(z, z3) -{ 1 }-> 1 :|: z >= 0, z3 = 1 or(z, z3) -{ 1 }-> 0 :|: z3 = 0, z = 0 or(z, z3) -{ 0 }-> 0 :|: z >= 0, z3 >= 0 Function symbols to be analyzed: {or}, {mem} Previous analysis results are: or: runtime: ?, size: O(1) [1] ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: or after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: mem(z, z3) -{ 3 }-> or(or(mem(z, y''), mem(z, z')), or(mem(z, y6), mem(z, z2))) :|: z >= 0, z' >= 0, y6 >= 0, y'' >= 0, z3 = 1 + (1 + y'' + z') + (1 + y6 + z2), z2 >= 0 mem(z, z3) -{ 3 }-> or(or(mem(z, y''), mem(z, z')), 0) :|: z3 = 1 + (1 + y'' + z') + 0, z >= 0, z' >= 0, y'' >= 0 mem(z, z3) -{ 3 }-> or(or(mem(z, y''), mem(z, z')), 1 + z + y5) :|: y5 >= 0, z3 = 1 + (1 + y'' + z') + (1 + y5), z >= 0, z' >= 0, y'' >= 0 mem(z, z3) -{ 3 }-> or(0, or(mem(z, y2), mem(z, z''))) :|: z'' >= 0, z >= 0, z3 = 1 + 0 + (1 + y2 + z''), y2 >= 0 mem(z, z3) -{ 3 }-> or(1 + z + y', or(mem(z, y4), mem(z, z1))) :|: z1 >= 0, z3 = 1 + (1 + y') + (1 + y4 + z1), z >= 0, y' >= 0, y4 >= 0 mem(z, z3) -{ 4 }-> 1 :|: z3 - 2 >= 0, z >= 0, x' >= 0, 1 + z + (z3 - 2) = 1, 0 = x' mem(z, z3) -{ 4 }-> 1 :|: z >= 0, z3 - 2 >= 0, 1 + z + (z3 - 2) = 1, 0 = y, y >= 0 mem(z, z3) -{ 4 }-> 1 :|: z >= 0, y' >= 0, y3 >= 0, z3 = 1 + (1 + y') + (1 + y3), 1 + z + y' = 1, 1 + z + y3 = y, y >= 0 mem(z, z3) -{ 4 }-> 1 :|: z >= 0, y' >= 0, y3 >= 0, z3 = 1 + (1 + y') + (1 + y3), x' >= 0, 1 + z + y3 = 1, 1 + z + y' = x' mem(z, z3) -{ 1 }-> 0 :|: z3 = 0, z >= 0 mem(z, z3) -{ 3 }-> 0 :|: z >= 0, z3 = 1 + 0 + 0, 0 = v1, v0 >= 0, v1 >= 0, 0 = v0 mem(z, z3) -{ 4 }-> 0 :|: z >= 0, z3 = 1 + 0 + 0, 0 = 0 mem(z, z3) -{ 3 }-> 0 :|: z3 - 2 >= 0, z >= 0, 1 + z + (z3 - 2) = v1, v0 >= 0, v1 >= 0, 0 = v0 mem(z, z3) -{ 3 }-> 0 :|: z >= 0, z3 - 2 >= 0, 0 = v1, v0 >= 0, v1 >= 0, 1 + z + (z3 - 2) = v0 mem(z, z3) -{ 3 }-> 0 :|: z >= 0, y' >= 0, y3 >= 0, z3 = 1 + (1 + y') + (1 + y3), 1 + z + y3 = v1, v0 >= 0, v1 >= 0, 1 + z + y' = v0 mem(z, z3) -{ 1 }-> 1 + z + (z3 - 1) :|: z >= 0, z3 - 1 >= 0 or(z, z3) -{ 1 }-> 1 :|: z = 1, z3 >= 0 or(z, z3) -{ 1 }-> 1 :|: z >= 0, z3 = 1 or(z, z3) -{ 1 }-> 0 :|: z3 = 0, z = 0 or(z, z3) -{ 0 }-> 0 :|: z >= 0, z3 >= 0 Function symbols to be analyzed: {mem} Previous analysis results are: or: runtime: O(1) [1], size: O(1) [1] ---------------------------------------- (25) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: mem(z, z3) -{ 3 }-> or(or(mem(z, y''), mem(z, z')), or(mem(z, y6), mem(z, z2))) :|: z >= 0, z' >= 0, y6 >= 0, y'' >= 0, z3 = 1 + (1 + y'' + z') + (1 + y6 + z2), z2 >= 0 mem(z, z3) -{ 3 }-> or(or(mem(z, y''), mem(z, z')), 0) :|: z3 = 1 + (1 + y'' + z') + 0, z >= 0, z' >= 0, y'' >= 0 mem(z, z3) -{ 3 }-> or(or(mem(z, y''), mem(z, z')), 1 + z + y5) :|: y5 >= 0, z3 = 1 + (1 + y'' + z') + (1 + y5), z >= 0, z' >= 0, y'' >= 0 mem(z, z3) -{ 3 }-> or(0, or(mem(z, y2), mem(z, z''))) :|: z'' >= 0, z >= 0, z3 = 1 + 0 + (1 + y2 + z''), y2 >= 0 mem(z, z3) -{ 3 }-> or(1 + z + y', or(mem(z, y4), mem(z, z1))) :|: z1 >= 0, z3 = 1 + (1 + y') + (1 + y4 + z1), z >= 0, y' >= 0, y4 >= 0 mem(z, z3) -{ 4 }-> 1 :|: z3 - 2 >= 0, z >= 0, x' >= 0, 1 + z + (z3 - 2) = 1, 0 = x' mem(z, z3) -{ 4 }-> 1 :|: z >= 0, z3 - 2 >= 0, 1 + z + (z3 - 2) = 1, 0 = y, y >= 0 mem(z, z3) -{ 4 }-> 1 :|: z >= 0, y' >= 0, y3 >= 0, z3 = 1 + (1 + y') + (1 + y3), 1 + z + y' = 1, 1 + z + y3 = y, y >= 0 mem(z, z3) -{ 4 }-> 1 :|: z >= 0, y' >= 0, y3 >= 0, z3 = 1 + (1 + y') + (1 + y3), x' >= 0, 1 + z + y3 = 1, 1 + z + y' = x' mem(z, z3) -{ 1 }-> 0 :|: z3 = 0, z >= 0 mem(z, z3) -{ 3 }-> 0 :|: z >= 0, z3 = 1 + 0 + 0, 0 = v1, v0 >= 0, v1 >= 0, 0 = v0 mem(z, z3) -{ 4 }-> 0 :|: z >= 0, z3 = 1 + 0 + 0, 0 = 0 mem(z, z3) -{ 3 }-> 0 :|: z3 - 2 >= 0, z >= 0, 1 + z + (z3 - 2) = v1, v0 >= 0, v1 >= 0, 0 = v0 mem(z, z3) -{ 3 }-> 0 :|: z >= 0, z3 - 2 >= 0, 0 = v1, v0 >= 0, v1 >= 0, 1 + z + (z3 - 2) = v0 mem(z, z3) -{ 3 }-> 0 :|: z >= 0, y' >= 0, y3 >= 0, z3 = 1 + (1 + y') + (1 + y3), 1 + z + y3 = v1, v0 >= 0, v1 >= 0, 1 + z + y' = v0 mem(z, z3) -{ 1 }-> 1 + z + (z3 - 1) :|: z >= 0, z3 - 1 >= 0 or(z, z3) -{ 1 }-> 1 :|: z = 1, z3 >= 0 or(z, z3) -{ 1 }-> 1 :|: z >= 0, z3 = 1 or(z, z3) -{ 1 }-> 0 :|: z3 = 0, z = 0 or(z, z3) -{ 0 }-> 0 :|: z >= 0, z3 >= 0 Function symbols to be analyzed: {mem} Previous analysis results are: or: runtime: O(1) [1], size: O(1) [1] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: mem after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z + z3 ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: mem(z, z3) -{ 3 }-> or(or(mem(z, y''), mem(z, z')), or(mem(z, y6), mem(z, z2))) :|: z >= 0, z' >= 0, y6 >= 0, y'' >= 0, z3 = 1 + (1 + y'' + z') + (1 + y6 + z2), z2 >= 0 mem(z, z3) -{ 3 }-> or(or(mem(z, y''), mem(z, z')), 0) :|: z3 = 1 + (1 + y'' + z') + 0, z >= 0, z' >= 0, y'' >= 0 mem(z, z3) -{ 3 }-> or(or(mem(z, y''), mem(z, z')), 1 + z + y5) :|: y5 >= 0, z3 = 1 + (1 + y'' + z') + (1 + y5), z >= 0, z' >= 0, y'' >= 0 mem(z, z3) -{ 3 }-> or(0, or(mem(z, y2), mem(z, z''))) :|: z'' >= 0, z >= 0, z3 = 1 + 0 + (1 + y2 + z''), y2 >= 0 mem(z, z3) -{ 3 }-> or(1 + z + y', or(mem(z, y4), mem(z, z1))) :|: z1 >= 0, z3 = 1 + (1 + y') + (1 + y4 + z1), z >= 0, y' >= 0, y4 >= 0 mem(z, z3) -{ 4 }-> 1 :|: z3 - 2 >= 0, z >= 0, x' >= 0, 1 + z + (z3 - 2) = 1, 0 = x' mem(z, z3) -{ 4 }-> 1 :|: z >= 0, z3 - 2 >= 0, 1 + z + (z3 - 2) = 1, 0 = y, y >= 0 mem(z, z3) -{ 4 }-> 1 :|: z >= 0, y' >= 0, y3 >= 0, z3 = 1 + (1 + y') + (1 + y3), 1 + z + y' = 1, 1 + z + y3 = y, y >= 0 mem(z, z3) -{ 4 }-> 1 :|: z >= 0, y' >= 0, y3 >= 0, z3 = 1 + (1 + y') + (1 + y3), x' >= 0, 1 + z + y3 = 1, 1 + z + y' = x' mem(z, z3) -{ 1 }-> 0 :|: z3 = 0, z >= 0 mem(z, z3) -{ 3 }-> 0 :|: z >= 0, z3 = 1 + 0 + 0, 0 = v1, v0 >= 0, v1 >= 0, 0 = v0 mem(z, z3) -{ 4 }-> 0 :|: z >= 0, z3 = 1 + 0 + 0, 0 = 0 mem(z, z3) -{ 3 }-> 0 :|: z3 - 2 >= 0, z >= 0, 1 + z + (z3 - 2) = v1, v0 >= 0, v1 >= 0, 0 = v0 mem(z, z3) -{ 3 }-> 0 :|: z >= 0, z3 - 2 >= 0, 0 = v1, v0 >= 0, v1 >= 0, 1 + z + (z3 - 2) = v0 mem(z, z3) -{ 3 }-> 0 :|: z >= 0, y' >= 0, y3 >= 0, z3 = 1 + (1 + y') + (1 + y3), 1 + z + y3 = v1, v0 >= 0, v1 >= 0, 1 + z + y' = v0 mem(z, z3) -{ 1 }-> 1 + z + (z3 - 1) :|: z >= 0, z3 - 1 >= 0 or(z, z3) -{ 1 }-> 1 :|: z = 1, z3 >= 0 or(z, z3) -{ 1 }-> 1 :|: z >= 0, z3 = 1 or(z, z3) -{ 1 }-> 0 :|: z3 = 0, z = 0 or(z, z3) -{ 0 }-> 0 :|: z >= 0, z3 >= 0 Function symbols to be analyzed: {mem} Previous analysis results are: or: runtime: O(1) [1], size: O(1) [1] mem: runtime: ?, size: O(n^1) [z + z3] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: mem after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 4 + 10*z3 ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: mem(z, z3) -{ 3 }-> or(or(mem(z, y''), mem(z, z')), or(mem(z, y6), mem(z, z2))) :|: z >= 0, z' >= 0, y6 >= 0, y'' >= 0, z3 = 1 + (1 + y'' + z') + (1 + y6 + z2), z2 >= 0 mem(z, z3) -{ 3 }-> or(or(mem(z, y''), mem(z, z')), 0) :|: z3 = 1 + (1 + y'' + z') + 0, z >= 0, z' >= 0, y'' >= 0 mem(z, z3) -{ 3 }-> or(or(mem(z, y''), mem(z, z')), 1 + z + y5) :|: y5 >= 0, z3 = 1 + (1 + y'' + z') + (1 + y5), z >= 0, z' >= 0, y'' >= 0 mem(z, z3) -{ 3 }-> or(0, or(mem(z, y2), mem(z, z''))) :|: z'' >= 0, z >= 0, z3 = 1 + 0 + (1 + y2 + z''), y2 >= 0 mem(z, z3) -{ 3 }-> or(1 + z + y', or(mem(z, y4), mem(z, z1))) :|: z1 >= 0, z3 = 1 + (1 + y') + (1 + y4 + z1), z >= 0, y' >= 0, y4 >= 0 mem(z, z3) -{ 4 }-> 1 :|: z3 - 2 >= 0, z >= 0, x' >= 0, 1 + z + (z3 - 2) = 1, 0 = x' mem(z, z3) -{ 4 }-> 1 :|: z >= 0, z3 - 2 >= 0, 1 + z + (z3 - 2) = 1, 0 = y, y >= 0 mem(z, z3) -{ 4 }-> 1 :|: z >= 0, y' >= 0, y3 >= 0, z3 = 1 + (1 + y') + (1 + y3), 1 + z + y' = 1, 1 + z + y3 = y, y >= 0 mem(z, z3) -{ 4 }-> 1 :|: z >= 0, y' >= 0, y3 >= 0, z3 = 1 + (1 + y') + (1 + y3), x' >= 0, 1 + z + y3 = 1, 1 + z + y' = x' mem(z, z3) -{ 1 }-> 0 :|: z3 = 0, z >= 0 mem(z, z3) -{ 3 }-> 0 :|: z >= 0, z3 = 1 + 0 + 0, 0 = v1, v0 >= 0, v1 >= 0, 0 = v0 mem(z, z3) -{ 4 }-> 0 :|: z >= 0, z3 = 1 + 0 + 0, 0 = 0 mem(z, z3) -{ 3 }-> 0 :|: z3 - 2 >= 0, z >= 0, 1 + z + (z3 - 2) = v1, v0 >= 0, v1 >= 0, 0 = v0 mem(z, z3) -{ 3 }-> 0 :|: z >= 0, z3 - 2 >= 0, 0 = v1, v0 >= 0, v1 >= 0, 1 + z + (z3 - 2) = v0 mem(z, z3) -{ 3 }-> 0 :|: z >= 0, y' >= 0, y3 >= 0, z3 = 1 + (1 + y') + (1 + y3), 1 + z + y3 = v1, v0 >= 0, v1 >= 0, 1 + z + y' = v0 mem(z, z3) -{ 1 }-> 1 + z + (z3 - 1) :|: z >= 0, z3 - 1 >= 0 or(z, z3) -{ 1 }-> 1 :|: z = 1, z3 >= 0 or(z, z3) -{ 1 }-> 1 :|: z >= 0, z3 = 1 or(z, z3) -{ 1 }-> 0 :|: z3 = 0, z = 0 or(z, z3) -{ 0 }-> 0 :|: z >= 0, z3 >= 0 Function symbols to be analyzed: Previous analysis results are: or: runtime: O(1) [1], size: O(1) [1] mem: runtime: O(n^1) [4 + 10*z3], size: O(n^1) [z + z3] ---------------------------------------- (31) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (32) BOUNDS(1, n^1) ---------------------------------------- (33) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (34) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: or(true, y) -> true or(x, true) -> true or(false, false) -> false mem(x, nil) -> false mem(x, set(y)) -> ='(x, y) mem(x, union(y, z)) -> or(mem(x, y), mem(x, z)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (35) SlicingProof (LOWER BOUND(ID)) Sliced the following arguments: mem/0 set/0 ='/0 ='/1 ---------------------------------------- (36) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: or(true, y) -> true or(x, true) -> true or(false, false) -> false mem(nil) -> false mem(set) -> =' mem(union(y, z)) -> or(mem(y), mem(z)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (37) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (38) Obligation: TRS: Rules: or(true, y) -> true or(x, true) -> true or(false, false) -> false mem(nil) -> false mem(set) -> =' mem(union(y, z)) -> or(mem(y), mem(z)) Types: or :: true:false:=' -> true:false:=' -> true:false:=' true :: true:false:=' false :: true:false:=' mem :: nil:set:union -> true:false:=' nil :: nil:set:union set :: nil:set:union =' :: true:false:=' union :: nil:set:union -> nil:set:union -> nil:set:union hole_true:false:='1_0 :: true:false:=' hole_nil:set:union2_0 :: nil:set:union gen_nil:set:union3_0 :: Nat -> nil:set:union ---------------------------------------- (39) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: mem ---------------------------------------- (40) Obligation: TRS: Rules: or(true, y) -> true or(x, true) -> true or(false, false) -> false mem(nil) -> false mem(set) -> =' mem(union(y, z)) -> or(mem(y), mem(z)) Types: or :: true:false:=' -> true:false:=' -> true:false:=' true :: true:false:=' false :: true:false:=' mem :: nil:set:union -> true:false:=' nil :: nil:set:union set :: nil:set:union =' :: true:false:=' union :: nil:set:union -> nil:set:union -> nil:set:union hole_true:false:='1_0 :: true:false:=' hole_nil:set:union2_0 :: nil:set:union gen_nil:set:union3_0 :: Nat -> nil:set:union Generator Equations: gen_nil:set:union3_0(0) <=> nil gen_nil:set:union3_0(+(x, 1)) <=> union(nil, gen_nil:set:union3_0(x)) The following defined symbols remain to be analysed: mem ---------------------------------------- (41) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: mem(gen_nil:set:union3_0(n5_0)) -> false, rt in Omega(1 + n5_0) Induction Base: mem(gen_nil:set:union3_0(0)) ->_R^Omega(1) false Induction Step: mem(gen_nil:set:union3_0(+(n5_0, 1))) ->_R^Omega(1) or(mem(nil), mem(gen_nil:set:union3_0(n5_0))) ->_R^Omega(1) or(false, mem(gen_nil:set:union3_0(n5_0))) ->_IH or(false, false) ->_R^Omega(1) false We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (42) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: or(true, y) -> true or(x, true) -> true or(false, false) -> false mem(nil) -> false mem(set) -> =' mem(union(y, z)) -> or(mem(y), mem(z)) Types: or :: true:false:=' -> true:false:=' -> true:false:=' true :: true:false:=' false :: true:false:=' mem :: nil:set:union -> true:false:=' nil :: nil:set:union set :: nil:set:union =' :: true:false:=' union :: nil:set:union -> nil:set:union -> nil:set:union hole_true:false:='1_0 :: true:false:=' hole_nil:set:union2_0 :: nil:set:union gen_nil:set:union3_0 :: Nat -> nil:set:union Generator Equations: gen_nil:set:union3_0(0) <=> nil gen_nil:set:union3_0(+(x, 1)) <=> union(nil, gen_nil:set:union3_0(x)) The following defined symbols remain to be analysed: mem ---------------------------------------- (43) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (44) BOUNDS(n^1, INF)