/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^3), O(n^3)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^3, n^3). (0) CpxTRS (1) RcToIrcProof [BOTH BOUNDS(ID, ID), 5 ms] (2) CpxTRS (3) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxWeightedTrs (5) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxTypedWeightedTrs (7) CompletionProof [UPPER BOUND(ID), 0 ms] (8) CpxTypedWeightedCompleteTrs (9) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxTypedWeightedCompleteTrs (11) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 1 ms] (12) CpxRNTS (13) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxRNTS (15) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 1 ms] (16) CpxRNTS (17) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (18) CpxRNTS (19) IntTrsBoundProof [UPPER BOUND(ID), 404 ms] (20) CpxRNTS (21) IntTrsBoundProof [UPPER BOUND(ID), 148 ms] (22) CpxRNTS (23) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 420 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 114 ms] (28) CpxRNTS (29) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (30) CpxRNTS (31) IntTrsBoundProof [UPPER BOUND(ID), 352 ms] (32) CpxRNTS (33) IntTrsBoundProof [UPPER BOUND(ID), 105 ms] (34) CpxRNTS (35) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (36) CpxRNTS (37) IntTrsBoundProof [UPPER BOUND(ID), 583 ms] (38) CpxRNTS (39) IntTrsBoundProof [UPPER BOUND(ID), 260 ms] (40) CpxRNTS (41) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (42) CpxRNTS (43) IntTrsBoundProof [UPPER BOUND(ID), 896 ms] (44) CpxRNTS (45) IntTrsBoundProof [UPPER BOUND(ID), 559 ms] (46) CpxRNTS (47) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (48) CpxRNTS (49) IntTrsBoundProof [UPPER BOUND(ID), 410 ms] (50) CpxRNTS (51) IntTrsBoundProof [UPPER BOUND(ID), 135 ms] (52) CpxRNTS (53) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (54) CpxRNTS (55) IntTrsBoundProof [UPPER BOUND(ID), 341 ms] (56) CpxRNTS (57) IntTrsBoundProof [UPPER BOUND(ID), 13 ms] (58) CpxRNTS (59) FinalProof [FINISHED, 0 ms] (60) BOUNDS(1, n^3) (61) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (62) CpxTRS (63) SlicingProof [LOWER BOUND(ID), 0 ms] (64) CpxTRS (65) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (66) typed CpxTrs (67) OrderProof [LOWER BOUND(ID), 0 ms] (68) typed CpxTrs (69) RewriteLemmaProof [LOWER BOUND(ID), 278 ms] (70) BEST (71) proven lower bound (72) LowerBoundPropagationProof [FINISHED, 0 ms] (73) BOUNDS(n^1, INF) (74) typed CpxTrs (75) RewriteLemmaProof [LOWER BOUND(ID), 41 ms] (76) typed CpxTrs (77) RewriteLemmaProof [LOWER BOUND(ID), 9 ms] (78) BEST (79) proven lower bound (80) LowerBoundPropagationProof [FINISHED, 0 ms] (81) BOUNDS(n^2, INF) (82) typed CpxTrs (83) RewriteLemmaProof [LOWER BOUND(ID), 22 ms] (84) BEST (85) proven lower bound (86) LowerBoundPropagationProof [FINISHED, 0 ms] (87) BOUNDS(n^3, INF) (88) typed CpxTrs (89) RewriteLemmaProof [LOWER BOUND(ID), 42 ms] (90) typed CpxTrs (91) RewriteLemmaProof [LOWER BOUND(ID), 53 ms] (92) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^3, n^3). The TRS R consists of the following rules: minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) quot(0, s(y)) -> 0 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) reverse(nil) -> nil reverse(add(n, x)) -> app(reverse(x), add(n, nil)) shuffle(nil) -> nil shuffle(add(n, x)) -> add(n, shuffle(reverse(x))) concat(leaf, y) -> y concat(cons(u, v), y) -> cons(u, concat(v, y)) less_leaves(x, leaf) -> false less_leaves(leaf, cons(w, z)) -> true less_leaves(cons(u, v), cons(w, z)) -> less_leaves(concat(u, v), concat(w, z)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. The duplicating contexts are: quot(s(x), s([])) The defined contexts are: quot([], s(x1)) shuffle([]) less_leaves([], x1) less_leaves(x0, []) app([], add(x1, nil)) minus([], x1) app([], x1) reverse([]) concat([], x1) concat(x0, []) app(x0, add([], nil)) app(x0, []) [] just represents basic- or constructor-terms in the following defined contexts: quot([], s(x1)) As the TRS is an overlay system and the defined contexts and the duplicating contexts don't overlap, we have rc = irc. ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^3). The TRS R consists of the following rules: minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) quot(0, s(y)) -> 0 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) reverse(nil) -> nil reverse(add(n, x)) -> app(reverse(x), add(n, nil)) shuffle(nil) -> nil shuffle(add(n, x)) -> add(n, shuffle(reverse(x))) concat(leaf, y) -> y concat(cons(u, v), y) -> cons(u, concat(v, y)) less_leaves(x, leaf) -> false less_leaves(leaf, cons(w, z)) -> true less_leaves(cons(u, v), cons(w, z)) -> less_leaves(concat(u, v), concat(w, z)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^3). The TRS R consists of the following rules: minus(x, 0) -> x [1] minus(s(x), s(y)) -> minus(x, y) [1] quot(0, s(y)) -> 0 [1] quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) [1] app(nil, y) -> y [1] app(add(n, x), y) -> add(n, app(x, y)) [1] reverse(nil) -> nil [1] reverse(add(n, x)) -> app(reverse(x), add(n, nil)) [1] shuffle(nil) -> nil [1] shuffle(add(n, x)) -> add(n, shuffle(reverse(x))) [1] concat(leaf, y) -> y [1] concat(cons(u, v), y) -> cons(u, concat(v, y)) [1] less_leaves(x, leaf) -> false [1] less_leaves(leaf, cons(w, z)) -> true [1] less_leaves(cons(u, v), cons(w, z)) -> less_leaves(concat(u, v), concat(w, z)) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (5) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: minus(x, 0) -> x [1] minus(s(x), s(y)) -> minus(x, y) [1] quot(0, s(y)) -> 0 [1] quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) [1] app(nil, y) -> y [1] app(add(n, x), y) -> add(n, app(x, y)) [1] reverse(nil) -> nil [1] reverse(add(n, x)) -> app(reverse(x), add(n, nil)) [1] shuffle(nil) -> nil [1] shuffle(add(n, x)) -> add(n, shuffle(reverse(x))) [1] concat(leaf, y) -> y [1] concat(cons(u, v), y) -> cons(u, concat(v, y)) [1] less_leaves(x, leaf) -> false [1] less_leaves(leaf, cons(w, z)) -> true [1] less_leaves(cons(u, v), cons(w, z)) -> less_leaves(concat(u, v), concat(w, z)) [1] The TRS has the following type information: minus :: 0:s -> 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s quot :: 0:s -> 0:s -> 0:s app :: nil:add -> nil:add -> nil:add nil :: nil:add add :: a -> nil:add -> nil:add reverse :: nil:add -> nil:add shuffle :: nil:add -> nil:add concat :: leaf:cons -> leaf:cons -> leaf:cons leaf :: leaf:cons cons :: leaf:cons -> leaf:cons -> leaf:cons less_leaves :: leaf:cons -> leaf:cons -> false:true false :: false:true true :: false:true Rewrite Strategy: INNERMOST ---------------------------------------- (7) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: quot_2 shuffle_1 less_leaves_2 (c) The following functions are completely defined: minus_2 reverse_1 concat_2 app_2 Due to the following rules being added: minus(v0, v1) -> 0 [0] And the following fresh constants: const ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: minus(x, 0) -> x [1] minus(s(x), s(y)) -> minus(x, y) [1] quot(0, s(y)) -> 0 [1] quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) [1] app(nil, y) -> y [1] app(add(n, x), y) -> add(n, app(x, y)) [1] reverse(nil) -> nil [1] reverse(add(n, x)) -> app(reverse(x), add(n, nil)) [1] shuffle(nil) -> nil [1] shuffle(add(n, x)) -> add(n, shuffle(reverse(x))) [1] concat(leaf, y) -> y [1] concat(cons(u, v), y) -> cons(u, concat(v, y)) [1] less_leaves(x, leaf) -> false [1] less_leaves(leaf, cons(w, z)) -> true [1] less_leaves(cons(u, v), cons(w, z)) -> less_leaves(concat(u, v), concat(w, z)) [1] minus(v0, v1) -> 0 [0] The TRS has the following type information: minus :: 0:s -> 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s quot :: 0:s -> 0:s -> 0:s app :: nil:add -> nil:add -> nil:add nil :: nil:add add :: a -> nil:add -> nil:add reverse :: nil:add -> nil:add shuffle :: nil:add -> nil:add concat :: leaf:cons -> leaf:cons -> leaf:cons leaf :: leaf:cons cons :: leaf:cons -> leaf:cons -> leaf:cons less_leaves :: leaf:cons -> leaf:cons -> false:true false :: false:true true :: false:true const :: a Rewrite Strategy: INNERMOST ---------------------------------------- (9) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: minus(x, 0) -> x [1] minus(s(x), s(y)) -> minus(x, y) [1] quot(0, s(y)) -> 0 [1] quot(s(x), s(0)) -> s(quot(x, s(0))) [2] quot(s(s(x')), s(s(y'))) -> s(quot(minus(x', y'), s(s(y')))) [2] quot(s(x), s(y)) -> s(quot(0, s(y))) [1] app(nil, y) -> y [1] app(add(n, x), y) -> add(n, app(x, y)) [1] reverse(nil) -> nil [1] reverse(add(n, nil)) -> app(nil, add(n, nil)) [2] reverse(add(n, add(n', x''))) -> app(app(reverse(x''), add(n', nil)), add(n, nil)) [2] shuffle(nil) -> nil [1] shuffle(add(n, nil)) -> add(n, shuffle(nil)) [2] shuffle(add(n, add(n'', x1))) -> add(n, shuffle(app(reverse(x1), add(n'', nil)))) [2] concat(leaf, y) -> y [1] concat(cons(u, v), y) -> cons(u, concat(v, y)) [1] less_leaves(x, leaf) -> false [1] less_leaves(leaf, cons(w, z)) -> true [1] less_leaves(cons(leaf, v), cons(leaf, z)) -> less_leaves(v, z) [3] less_leaves(cons(leaf, v), cons(cons(u'', v''), z)) -> less_leaves(v, cons(u'', concat(v'', z))) [3] less_leaves(cons(cons(u', v'), v), cons(leaf, z)) -> less_leaves(cons(u', concat(v', v)), z) [3] less_leaves(cons(cons(u', v'), v), cons(cons(u1, v2), z)) -> less_leaves(cons(u', concat(v', v)), cons(u1, concat(v2, z))) [3] minus(v0, v1) -> 0 [0] The TRS has the following type information: minus :: 0:s -> 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s quot :: 0:s -> 0:s -> 0:s app :: nil:add -> nil:add -> nil:add nil :: nil:add add :: a -> nil:add -> nil:add reverse :: nil:add -> nil:add shuffle :: nil:add -> nil:add concat :: leaf:cons -> leaf:cons -> leaf:cons leaf :: leaf:cons cons :: leaf:cons -> leaf:cons -> leaf:cons less_leaves :: leaf:cons -> leaf:cons -> false:true false :: false:true true :: false:true const :: a Rewrite Strategy: INNERMOST ---------------------------------------- (11) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 nil => 0 leaf => 0 false => 0 true => 1 const => 0 ---------------------------------------- (12) Obligation: Complexity RNTS consisting of the following rules: app(z', z'') -{ 1 }-> y :|: z'' = y, y >= 0, z' = 0 app(z', z'') -{ 1 }-> 1 + n + app(x, y) :|: n >= 0, z'' = y, z' = 1 + n + x, x >= 0, y >= 0 concat(z', z'') -{ 1 }-> y :|: z'' = y, y >= 0, z' = 0 concat(z', z'') -{ 1 }-> 1 + u + concat(v, y) :|: v >= 0, z' = 1 + u + v, z'' = y, y >= 0, u >= 0 less_leaves(z', z'') -{ 3 }-> less_leaves(v, z) :|: v >= 0, z >= 0, z' = 1 + 0 + v, z'' = 1 + 0 + z less_leaves(z', z'') -{ 3 }-> less_leaves(v, 1 + u'' + concat(v'', z)) :|: v >= 0, z >= 0, z'' = 1 + (1 + u'' + v'') + z, u'' >= 0, z' = 1 + 0 + v, v'' >= 0 less_leaves(z', z'') -{ 3 }-> less_leaves(1 + u' + concat(v', v), z) :|: v >= 0, z >= 0, u' >= 0, v' >= 0, z' = 1 + (1 + u' + v') + v, z'' = 1 + 0 + z less_leaves(z', z'') -{ 3 }-> less_leaves(1 + u' + concat(v', v), 1 + u1 + concat(v2, z)) :|: v >= 0, z >= 0, u' >= 0, v' >= 0, u1 >= 0, z' = 1 + (1 + u' + v') + v, z'' = 1 + (1 + u1 + v2) + z, v2 >= 0 less_leaves(z', z'') -{ 1 }-> 1 :|: z >= 0, z'' = 1 + w + z, w >= 0, z' = 0 less_leaves(z', z'') -{ 1 }-> 0 :|: z'' = 0, z' = x, x >= 0 minus(z', z'') -{ 1 }-> x :|: z'' = 0, z' = x, x >= 0 minus(z', z'') -{ 1 }-> minus(x, y) :|: z' = 1 + x, x >= 0, y >= 0, z'' = 1 + y minus(z', z'') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z'' = v1, z' = v0 quot(z', z'') -{ 1 }-> 0 :|: y >= 0, z'' = 1 + y, z' = 0 quot(z', z'') -{ 2 }-> 1 + quot(x, 1 + 0) :|: z' = 1 + x, x >= 0, z'' = 1 + 0 quot(z', z'') -{ 2 }-> 1 + quot(minus(x', y'), 1 + (1 + y')) :|: z' = 1 + (1 + x'), x' >= 0, z'' = 1 + (1 + y'), y' >= 0 quot(z', z'') -{ 1 }-> 1 + quot(0, 1 + y) :|: z' = 1 + x, x >= 0, y >= 0, z'' = 1 + y reverse(z') -{ 2 }-> app(app(reverse(x''), 1 + n' + 0), 1 + n + 0) :|: n >= 0, n' >= 0, z' = 1 + n + (1 + n' + x''), x'' >= 0 reverse(z') -{ 2 }-> app(0, 1 + n + 0) :|: n >= 0, z' = 1 + n + 0 reverse(z') -{ 1 }-> 0 :|: z' = 0 shuffle(z') -{ 1 }-> 0 :|: z' = 0 shuffle(z') -{ 2 }-> 1 + n + shuffle(app(reverse(x1), 1 + n'' + 0)) :|: n >= 0, x1 >= 0, n'' >= 0, z' = 1 + n + (1 + n'' + x1) shuffle(z') -{ 2 }-> 1 + n + shuffle(0) :|: n >= 0, z' = 1 + n + 0 ---------------------------------------- (13) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: app(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 app(z', z'') -{ 1 }-> 1 + n + app(x, z'') :|: n >= 0, z' = 1 + n + x, x >= 0, z'' >= 0 concat(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 concat(z', z'') -{ 1 }-> 1 + u + concat(v, z'') :|: v >= 0, z' = 1 + u + v, z'' >= 0, u >= 0 less_leaves(z', z'') -{ 3 }-> less_leaves(z' - 1, z'' - 1) :|: z' - 1 >= 0, z'' - 1 >= 0 less_leaves(z', z'') -{ 3 }-> less_leaves(z' - 1, 1 + u'' + concat(v'', z)) :|: z' - 1 >= 0, z >= 0, z'' = 1 + (1 + u'' + v'') + z, u'' >= 0, v'' >= 0 less_leaves(z', z'') -{ 3 }-> less_leaves(1 + u' + concat(v', v), z'' - 1) :|: v >= 0, z'' - 1 >= 0, u' >= 0, v' >= 0, z' = 1 + (1 + u' + v') + v less_leaves(z', z'') -{ 3 }-> less_leaves(1 + u' + concat(v', v), 1 + u1 + concat(v2, z)) :|: v >= 0, z >= 0, u' >= 0, v' >= 0, u1 >= 0, z' = 1 + (1 + u' + v') + v, z'' = 1 + (1 + u1 + v2) + z, v2 >= 0 less_leaves(z', z'') -{ 1 }-> 1 :|: z >= 0, z'' = 1 + w + z, w >= 0, z' = 0 less_leaves(z', z'') -{ 1 }-> 0 :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 }-> minus(z' - 1, z'' - 1) :|: z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 quot(z', z'') -{ 1 }-> 0 :|: z'' - 1 >= 0, z' = 0 quot(z', z'') -{ 2 }-> 1 + quot(minus(z' - 2, z'' - 2), 1 + (1 + (z'' - 2))) :|: z' - 2 >= 0, z'' - 2 >= 0 quot(z', z'') -{ 1 }-> 1 + quot(0, 1 + (z'' - 1)) :|: z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'') -{ 2 }-> 1 + quot(z' - 1, 1 + 0) :|: z' - 1 >= 0, z'' = 1 + 0 reverse(z') -{ 2 }-> app(app(reverse(x''), 1 + n' + 0), 1 + n + 0) :|: n >= 0, n' >= 0, z' = 1 + n + (1 + n' + x''), x'' >= 0 reverse(z') -{ 2 }-> app(0, 1 + (z' - 1) + 0) :|: z' - 1 >= 0 reverse(z') -{ 1 }-> 0 :|: z' = 0 shuffle(z') -{ 1 }-> 0 :|: z' = 0 shuffle(z') -{ 2 }-> 1 + n + shuffle(app(reverse(x1), 1 + n'' + 0)) :|: n >= 0, x1 >= 0, n'' >= 0, z' = 1 + n + (1 + n'' + x1) shuffle(z') -{ 2 }-> 1 + (z' - 1) + shuffle(0) :|: z' - 1 >= 0 ---------------------------------------- (15) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { minus } { concat } { app } { quot } { less_leaves } { reverse } { shuffle } ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: app(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 app(z', z'') -{ 1 }-> 1 + n + app(x, z'') :|: n >= 0, z' = 1 + n + x, x >= 0, z'' >= 0 concat(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 concat(z', z'') -{ 1 }-> 1 + u + concat(v, z'') :|: v >= 0, z' = 1 + u + v, z'' >= 0, u >= 0 less_leaves(z', z'') -{ 3 }-> less_leaves(z' - 1, z'' - 1) :|: z' - 1 >= 0, z'' - 1 >= 0 less_leaves(z', z'') -{ 3 }-> less_leaves(z' - 1, 1 + u'' + concat(v'', z)) :|: z' - 1 >= 0, z >= 0, z'' = 1 + (1 + u'' + v'') + z, u'' >= 0, v'' >= 0 less_leaves(z', z'') -{ 3 }-> less_leaves(1 + u' + concat(v', v), z'' - 1) :|: v >= 0, z'' - 1 >= 0, u' >= 0, v' >= 0, z' = 1 + (1 + u' + v') + v less_leaves(z', z'') -{ 3 }-> less_leaves(1 + u' + concat(v', v), 1 + u1 + concat(v2, z)) :|: v >= 0, z >= 0, u' >= 0, v' >= 0, u1 >= 0, z' = 1 + (1 + u' + v') + v, z'' = 1 + (1 + u1 + v2) + z, v2 >= 0 less_leaves(z', z'') -{ 1 }-> 1 :|: z >= 0, z'' = 1 + w + z, w >= 0, z' = 0 less_leaves(z', z'') -{ 1 }-> 0 :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 }-> minus(z' - 1, z'' - 1) :|: z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 quot(z', z'') -{ 1 }-> 0 :|: z'' - 1 >= 0, z' = 0 quot(z', z'') -{ 2 }-> 1 + quot(minus(z' - 2, z'' - 2), 1 + (1 + (z'' - 2))) :|: z' - 2 >= 0, z'' - 2 >= 0 quot(z', z'') -{ 1 }-> 1 + quot(0, 1 + (z'' - 1)) :|: z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'') -{ 2 }-> 1 + quot(z' - 1, 1 + 0) :|: z' - 1 >= 0, z'' = 1 + 0 reverse(z') -{ 2 }-> app(app(reverse(x''), 1 + n' + 0), 1 + n + 0) :|: n >= 0, n' >= 0, z' = 1 + n + (1 + n' + x''), x'' >= 0 reverse(z') -{ 2 }-> app(0, 1 + (z' - 1) + 0) :|: z' - 1 >= 0 reverse(z') -{ 1 }-> 0 :|: z' = 0 shuffle(z') -{ 1 }-> 0 :|: z' = 0 shuffle(z') -{ 2 }-> 1 + n + shuffle(app(reverse(x1), 1 + n'' + 0)) :|: n >= 0, x1 >= 0, n'' >= 0, z' = 1 + n + (1 + n'' + x1) shuffle(z') -{ 2 }-> 1 + (z' - 1) + shuffle(0) :|: z' - 1 >= 0 Function symbols to be analyzed: {minus}, {concat}, {app}, {quot}, {less_leaves}, {reverse}, {shuffle} ---------------------------------------- (17) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: app(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 app(z', z'') -{ 1 }-> 1 + n + app(x, z'') :|: n >= 0, z' = 1 + n + x, x >= 0, z'' >= 0 concat(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 concat(z', z'') -{ 1 }-> 1 + u + concat(v, z'') :|: v >= 0, z' = 1 + u + v, z'' >= 0, u >= 0 less_leaves(z', z'') -{ 3 }-> less_leaves(z' - 1, z'' - 1) :|: z' - 1 >= 0, z'' - 1 >= 0 less_leaves(z', z'') -{ 3 }-> less_leaves(z' - 1, 1 + u'' + concat(v'', z)) :|: z' - 1 >= 0, z >= 0, z'' = 1 + (1 + u'' + v'') + z, u'' >= 0, v'' >= 0 less_leaves(z', z'') -{ 3 }-> less_leaves(1 + u' + concat(v', v), z'' - 1) :|: v >= 0, z'' - 1 >= 0, u' >= 0, v' >= 0, z' = 1 + (1 + u' + v') + v less_leaves(z', z'') -{ 3 }-> less_leaves(1 + u' + concat(v', v), 1 + u1 + concat(v2, z)) :|: v >= 0, z >= 0, u' >= 0, v' >= 0, u1 >= 0, z' = 1 + (1 + u' + v') + v, z'' = 1 + (1 + u1 + v2) + z, v2 >= 0 less_leaves(z', z'') -{ 1 }-> 1 :|: z >= 0, z'' = 1 + w + z, w >= 0, z' = 0 less_leaves(z', z'') -{ 1 }-> 0 :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 }-> minus(z' - 1, z'' - 1) :|: z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 quot(z', z'') -{ 1 }-> 0 :|: z'' - 1 >= 0, z' = 0 quot(z', z'') -{ 2 }-> 1 + quot(minus(z' - 2, z'' - 2), 1 + (1 + (z'' - 2))) :|: z' - 2 >= 0, z'' - 2 >= 0 quot(z', z'') -{ 1 }-> 1 + quot(0, 1 + (z'' - 1)) :|: z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'') -{ 2 }-> 1 + quot(z' - 1, 1 + 0) :|: z' - 1 >= 0, z'' = 1 + 0 reverse(z') -{ 2 }-> app(app(reverse(x''), 1 + n' + 0), 1 + n + 0) :|: n >= 0, n' >= 0, z' = 1 + n + (1 + n' + x''), x'' >= 0 reverse(z') -{ 2 }-> app(0, 1 + (z' - 1) + 0) :|: z' - 1 >= 0 reverse(z') -{ 1 }-> 0 :|: z' = 0 shuffle(z') -{ 1 }-> 0 :|: z' = 0 shuffle(z') -{ 2 }-> 1 + n + shuffle(app(reverse(x1), 1 + n'' + 0)) :|: n >= 0, x1 >= 0, n'' >= 0, z' = 1 + n + (1 + n'' + x1) shuffle(z') -{ 2 }-> 1 + (z' - 1) + shuffle(0) :|: z' - 1 >= 0 Function symbols to be analyzed: {minus}, {concat}, {app}, {quot}, {less_leaves}, {reverse}, {shuffle} ---------------------------------------- (19) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: minus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z' ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: app(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 app(z', z'') -{ 1 }-> 1 + n + app(x, z'') :|: n >= 0, z' = 1 + n + x, x >= 0, z'' >= 0 concat(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 concat(z', z'') -{ 1 }-> 1 + u + concat(v, z'') :|: v >= 0, z' = 1 + u + v, z'' >= 0, u >= 0 less_leaves(z', z'') -{ 3 }-> less_leaves(z' - 1, z'' - 1) :|: z' - 1 >= 0, z'' - 1 >= 0 less_leaves(z', z'') -{ 3 }-> less_leaves(z' - 1, 1 + u'' + concat(v'', z)) :|: z' - 1 >= 0, z >= 0, z'' = 1 + (1 + u'' + v'') + z, u'' >= 0, v'' >= 0 less_leaves(z', z'') -{ 3 }-> less_leaves(1 + u' + concat(v', v), z'' - 1) :|: v >= 0, z'' - 1 >= 0, u' >= 0, v' >= 0, z' = 1 + (1 + u' + v') + v less_leaves(z', z'') -{ 3 }-> less_leaves(1 + u' + concat(v', v), 1 + u1 + concat(v2, z)) :|: v >= 0, z >= 0, u' >= 0, v' >= 0, u1 >= 0, z' = 1 + (1 + u' + v') + v, z'' = 1 + (1 + u1 + v2) + z, v2 >= 0 less_leaves(z', z'') -{ 1 }-> 1 :|: z >= 0, z'' = 1 + w + z, w >= 0, z' = 0 less_leaves(z', z'') -{ 1 }-> 0 :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 }-> minus(z' - 1, z'' - 1) :|: z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 quot(z', z'') -{ 1 }-> 0 :|: z'' - 1 >= 0, z' = 0 quot(z', z'') -{ 2 }-> 1 + quot(minus(z' - 2, z'' - 2), 1 + (1 + (z'' - 2))) :|: z' - 2 >= 0, z'' - 2 >= 0 quot(z', z'') -{ 1 }-> 1 + quot(0, 1 + (z'' - 1)) :|: z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'') -{ 2 }-> 1 + quot(z' - 1, 1 + 0) :|: z' - 1 >= 0, z'' = 1 + 0 reverse(z') -{ 2 }-> app(app(reverse(x''), 1 + n' + 0), 1 + n + 0) :|: n >= 0, n' >= 0, z' = 1 + n + (1 + n' + x''), x'' >= 0 reverse(z') -{ 2 }-> app(0, 1 + (z' - 1) + 0) :|: z' - 1 >= 0 reverse(z') -{ 1 }-> 0 :|: z' = 0 shuffle(z') -{ 1 }-> 0 :|: z' = 0 shuffle(z') -{ 2 }-> 1 + n + shuffle(app(reverse(x1), 1 + n'' + 0)) :|: n >= 0, x1 >= 0, n'' >= 0, z' = 1 + n + (1 + n'' + x1) shuffle(z') -{ 2 }-> 1 + (z' - 1) + shuffle(0) :|: z' - 1 >= 0 Function symbols to be analyzed: {minus}, {concat}, {app}, {quot}, {less_leaves}, {reverse}, {shuffle} Previous analysis results are: minus: runtime: ?, size: O(n^1) [z'] ---------------------------------------- (21) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: minus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z'' ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: app(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 app(z', z'') -{ 1 }-> 1 + n + app(x, z'') :|: n >= 0, z' = 1 + n + x, x >= 0, z'' >= 0 concat(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 concat(z', z'') -{ 1 }-> 1 + u + concat(v, z'') :|: v >= 0, z' = 1 + u + v, z'' >= 0, u >= 0 less_leaves(z', z'') -{ 3 }-> less_leaves(z' - 1, z'' - 1) :|: z' - 1 >= 0, z'' - 1 >= 0 less_leaves(z', z'') -{ 3 }-> less_leaves(z' - 1, 1 + u'' + concat(v'', z)) :|: z' - 1 >= 0, z >= 0, z'' = 1 + (1 + u'' + v'') + z, u'' >= 0, v'' >= 0 less_leaves(z', z'') -{ 3 }-> less_leaves(1 + u' + concat(v', v), z'' - 1) :|: v >= 0, z'' - 1 >= 0, u' >= 0, v' >= 0, z' = 1 + (1 + u' + v') + v less_leaves(z', z'') -{ 3 }-> less_leaves(1 + u' + concat(v', v), 1 + u1 + concat(v2, z)) :|: v >= 0, z >= 0, u' >= 0, v' >= 0, u1 >= 0, z' = 1 + (1 + u' + v') + v, z'' = 1 + (1 + u1 + v2) + z, v2 >= 0 less_leaves(z', z'') -{ 1 }-> 1 :|: z >= 0, z'' = 1 + w + z, w >= 0, z' = 0 less_leaves(z', z'') -{ 1 }-> 0 :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 }-> minus(z' - 1, z'' - 1) :|: z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 quot(z', z'') -{ 1 }-> 0 :|: z'' - 1 >= 0, z' = 0 quot(z', z'') -{ 2 }-> 1 + quot(minus(z' - 2, z'' - 2), 1 + (1 + (z'' - 2))) :|: z' - 2 >= 0, z'' - 2 >= 0 quot(z', z'') -{ 1 }-> 1 + quot(0, 1 + (z'' - 1)) :|: z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'') -{ 2 }-> 1 + quot(z' - 1, 1 + 0) :|: z' - 1 >= 0, z'' = 1 + 0 reverse(z') -{ 2 }-> app(app(reverse(x''), 1 + n' + 0), 1 + n + 0) :|: n >= 0, n' >= 0, z' = 1 + n + (1 + n' + x''), x'' >= 0 reverse(z') -{ 2 }-> app(0, 1 + (z' - 1) + 0) :|: z' - 1 >= 0 reverse(z') -{ 1 }-> 0 :|: z' = 0 shuffle(z') -{ 1 }-> 0 :|: z' = 0 shuffle(z') -{ 2 }-> 1 + n + shuffle(app(reverse(x1), 1 + n'' + 0)) :|: n >= 0, x1 >= 0, n'' >= 0, z' = 1 + n + (1 + n'' + x1) shuffle(z') -{ 2 }-> 1 + (z' - 1) + shuffle(0) :|: z' - 1 >= 0 Function symbols to be analyzed: {concat}, {app}, {quot}, {less_leaves}, {reverse}, {shuffle} Previous analysis results are: minus: runtime: O(n^1) [1 + z''], size: O(n^1) [z'] ---------------------------------------- (23) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: app(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 app(z', z'') -{ 1 }-> 1 + n + app(x, z'') :|: n >= 0, z' = 1 + n + x, x >= 0, z'' >= 0 concat(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 concat(z', z'') -{ 1 }-> 1 + u + concat(v, z'') :|: v >= 0, z' = 1 + u + v, z'' >= 0, u >= 0 less_leaves(z', z'') -{ 3 }-> less_leaves(z' - 1, z'' - 1) :|: z' - 1 >= 0, z'' - 1 >= 0 less_leaves(z', z'') -{ 3 }-> less_leaves(z' - 1, 1 + u'' + concat(v'', z)) :|: z' - 1 >= 0, z >= 0, z'' = 1 + (1 + u'' + v'') + z, u'' >= 0, v'' >= 0 less_leaves(z', z'') -{ 3 }-> less_leaves(1 + u' + concat(v', v), z'' - 1) :|: v >= 0, z'' - 1 >= 0, u' >= 0, v' >= 0, z' = 1 + (1 + u' + v') + v less_leaves(z', z'') -{ 3 }-> less_leaves(1 + u' + concat(v', v), 1 + u1 + concat(v2, z)) :|: v >= 0, z >= 0, u' >= 0, v' >= 0, u1 >= 0, z' = 1 + (1 + u' + v') + v, z'' = 1 + (1 + u1 + v2) + z, v2 >= 0 less_leaves(z', z'') -{ 1 }-> 1 :|: z >= 0, z'' = 1 + w + z, w >= 0, z' = 0 less_leaves(z', z'') -{ 1 }-> 0 :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 + z'' }-> s :|: s >= 0, s <= z' - 1, z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 quot(z', z'') -{ 1 }-> 0 :|: z'' - 1 >= 0, z' = 0 quot(z', z'') -{ 1 + z'' }-> 1 + quot(s', 1 + (1 + (z'' - 2))) :|: s' >= 0, s' <= z' - 2, z' - 2 >= 0, z'' - 2 >= 0 quot(z', z'') -{ 1 }-> 1 + quot(0, 1 + (z'' - 1)) :|: z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'') -{ 2 }-> 1 + quot(z' - 1, 1 + 0) :|: z' - 1 >= 0, z'' = 1 + 0 reverse(z') -{ 2 }-> app(app(reverse(x''), 1 + n' + 0), 1 + n + 0) :|: n >= 0, n' >= 0, z' = 1 + n + (1 + n' + x''), x'' >= 0 reverse(z') -{ 2 }-> app(0, 1 + (z' - 1) + 0) :|: z' - 1 >= 0 reverse(z') -{ 1 }-> 0 :|: z' = 0 shuffle(z') -{ 1 }-> 0 :|: z' = 0 shuffle(z') -{ 2 }-> 1 + n + shuffle(app(reverse(x1), 1 + n'' + 0)) :|: n >= 0, x1 >= 0, n'' >= 0, z' = 1 + n + (1 + n'' + x1) shuffle(z') -{ 2 }-> 1 + (z' - 1) + shuffle(0) :|: z' - 1 >= 0 Function symbols to be analyzed: {concat}, {app}, {quot}, {less_leaves}, {reverse}, {shuffle} Previous analysis results are: minus: runtime: O(n^1) [1 + z''], size: O(n^1) [z'] ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: concat after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z' + z'' ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: app(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 app(z', z'') -{ 1 }-> 1 + n + app(x, z'') :|: n >= 0, z' = 1 + n + x, x >= 0, z'' >= 0 concat(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 concat(z', z'') -{ 1 }-> 1 + u + concat(v, z'') :|: v >= 0, z' = 1 + u + v, z'' >= 0, u >= 0 less_leaves(z', z'') -{ 3 }-> less_leaves(z' - 1, z'' - 1) :|: z' - 1 >= 0, z'' - 1 >= 0 less_leaves(z', z'') -{ 3 }-> less_leaves(z' - 1, 1 + u'' + concat(v'', z)) :|: z' - 1 >= 0, z >= 0, z'' = 1 + (1 + u'' + v'') + z, u'' >= 0, v'' >= 0 less_leaves(z', z'') -{ 3 }-> less_leaves(1 + u' + concat(v', v), z'' - 1) :|: v >= 0, z'' - 1 >= 0, u' >= 0, v' >= 0, z' = 1 + (1 + u' + v') + v less_leaves(z', z'') -{ 3 }-> less_leaves(1 + u' + concat(v', v), 1 + u1 + concat(v2, z)) :|: v >= 0, z >= 0, u' >= 0, v' >= 0, u1 >= 0, z' = 1 + (1 + u' + v') + v, z'' = 1 + (1 + u1 + v2) + z, v2 >= 0 less_leaves(z', z'') -{ 1 }-> 1 :|: z >= 0, z'' = 1 + w + z, w >= 0, z' = 0 less_leaves(z', z'') -{ 1 }-> 0 :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 + z'' }-> s :|: s >= 0, s <= z' - 1, z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 quot(z', z'') -{ 1 }-> 0 :|: z'' - 1 >= 0, z' = 0 quot(z', z'') -{ 1 + z'' }-> 1 + quot(s', 1 + (1 + (z'' - 2))) :|: s' >= 0, s' <= z' - 2, z' - 2 >= 0, z'' - 2 >= 0 quot(z', z'') -{ 1 }-> 1 + quot(0, 1 + (z'' - 1)) :|: z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'') -{ 2 }-> 1 + quot(z' - 1, 1 + 0) :|: z' - 1 >= 0, z'' = 1 + 0 reverse(z') -{ 2 }-> app(app(reverse(x''), 1 + n' + 0), 1 + n + 0) :|: n >= 0, n' >= 0, z' = 1 + n + (1 + n' + x''), x'' >= 0 reverse(z') -{ 2 }-> app(0, 1 + (z' - 1) + 0) :|: z' - 1 >= 0 reverse(z') -{ 1 }-> 0 :|: z' = 0 shuffle(z') -{ 1 }-> 0 :|: z' = 0 shuffle(z') -{ 2 }-> 1 + n + shuffle(app(reverse(x1), 1 + n'' + 0)) :|: n >= 0, x1 >= 0, n'' >= 0, z' = 1 + n + (1 + n'' + x1) shuffle(z') -{ 2 }-> 1 + (z' - 1) + shuffle(0) :|: z' - 1 >= 0 Function symbols to be analyzed: {concat}, {app}, {quot}, {less_leaves}, {reverse}, {shuffle} Previous analysis results are: minus: runtime: O(n^1) [1 + z''], size: O(n^1) [z'] concat: runtime: ?, size: O(n^1) [z' + z''] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: concat after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z' ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: app(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 app(z', z'') -{ 1 }-> 1 + n + app(x, z'') :|: n >= 0, z' = 1 + n + x, x >= 0, z'' >= 0 concat(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 concat(z', z'') -{ 1 }-> 1 + u + concat(v, z'') :|: v >= 0, z' = 1 + u + v, z'' >= 0, u >= 0 less_leaves(z', z'') -{ 3 }-> less_leaves(z' - 1, z'' - 1) :|: z' - 1 >= 0, z'' - 1 >= 0 less_leaves(z', z'') -{ 3 }-> less_leaves(z' - 1, 1 + u'' + concat(v'', z)) :|: z' - 1 >= 0, z >= 0, z'' = 1 + (1 + u'' + v'') + z, u'' >= 0, v'' >= 0 less_leaves(z', z'') -{ 3 }-> less_leaves(1 + u' + concat(v', v), z'' - 1) :|: v >= 0, z'' - 1 >= 0, u' >= 0, v' >= 0, z' = 1 + (1 + u' + v') + v less_leaves(z', z'') -{ 3 }-> less_leaves(1 + u' + concat(v', v), 1 + u1 + concat(v2, z)) :|: v >= 0, z >= 0, u' >= 0, v' >= 0, u1 >= 0, z' = 1 + (1 + u' + v') + v, z'' = 1 + (1 + u1 + v2) + z, v2 >= 0 less_leaves(z', z'') -{ 1 }-> 1 :|: z >= 0, z'' = 1 + w + z, w >= 0, z' = 0 less_leaves(z', z'') -{ 1 }-> 0 :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 + z'' }-> s :|: s >= 0, s <= z' - 1, z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 quot(z', z'') -{ 1 }-> 0 :|: z'' - 1 >= 0, z' = 0 quot(z', z'') -{ 1 + z'' }-> 1 + quot(s', 1 + (1 + (z'' - 2))) :|: s' >= 0, s' <= z' - 2, z' - 2 >= 0, z'' - 2 >= 0 quot(z', z'') -{ 1 }-> 1 + quot(0, 1 + (z'' - 1)) :|: z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'') -{ 2 }-> 1 + quot(z' - 1, 1 + 0) :|: z' - 1 >= 0, z'' = 1 + 0 reverse(z') -{ 2 }-> app(app(reverse(x''), 1 + n' + 0), 1 + n + 0) :|: n >= 0, n' >= 0, z' = 1 + n + (1 + n' + x''), x'' >= 0 reverse(z') -{ 2 }-> app(0, 1 + (z' - 1) + 0) :|: z' - 1 >= 0 reverse(z') -{ 1 }-> 0 :|: z' = 0 shuffle(z') -{ 1 }-> 0 :|: z' = 0 shuffle(z') -{ 2 }-> 1 + n + shuffle(app(reverse(x1), 1 + n'' + 0)) :|: n >= 0, x1 >= 0, n'' >= 0, z' = 1 + n + (1 + n'' + x1) shuffle(z') -{ 2 }-> 1 + (z' - 1) + shuffle(0) :|: z' - 1 >= 0 Function symbols to be analyzed: {app}, {quot}, {less_leaves}, {reverse}, {shuffle} Previous analysis results are: minus: runtime: O(n^1) [1 + z''], size: O(n^1) [z'] concat: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] ---------------------------------------- (29) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: app(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 app(z', z'') -{ 1 }-> 1 + n + app(x, z'') :|: n >= 0, z' = 1 + n + x, x >= 0, z'' >= 0 concat(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 concat(z', z'') -{ 2 + v }-> 1 + u + s'' :|: s'' >= 0, s'' <= v + z'', v >= 0, z' = 1 + u + v, z'' >= 0, u >= 0 less_leaves(z', z'') -{ 3 }-> less_leaves(z' - 1, z'' - 1) :|: z' - 1 >= 0, z'' - 1 >= 0 less_leaves(z', z'') -{ 4 + v'' }-> less_leaves(z' - 1, 1 + u'' + s1) :|: s1 >= 0, s1 <= v'' + z, z' - 1 >= 0, z >= 0, z'' = 1 + (1 + u'' + v'') + z, u'' >= 0, v'' >= 0 less_leaves(z', z'') -{ 4 + v' }-> less_leaves(1 + u' + s2, z'' - 1) :|: s2 >= 0, s2 <= v' + v, v >= 0, z'' - 1 >= 0, u' >= 0, v' >= 0, z' = 1 + (1 + u' + v') + v less_leaves(z', z'') -{ 5 + v' + v2 }-> less_leaves(1 + u' + s3, 1 + u1 + s4) :|: s3 >= 0, s3 <= v' + v, s4 >= 0, s4 <= v2 + z, v >= 0, z >= 0, u' >= 0, v' >= 0, u1 >= 0, z' = 1 + (1 + u' + v') + v, z'' = 1 + (1 + u1 + v2) + z, v2 >= 0 less_leaves(z', z'') -{ 1 }-> 1 :|: z >= 0, z'' = 1 + w + z, w >= 0, z' = 0 less_leaves(z', z'') -{ 1 }-> 0 :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 + z'' }-> s :|: s >= 0, s <= z' - 1, z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 quot(z', z'') -{ 1 }-> 0 :|: z'' - 1 >= 0, z' = 0 quot(z', z'') -{ 1 + z'' }-> 1 + quot(s', 1 + (1 + (z'' - 2))) :|: s' >= 0, s' <= z' - 2, z' - 2 >= 0, z'' - 2 >= 0 quot(z', z'') -{ 1 }-> 1 + quot(0, 1 + (z'' - 1)) :|: z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'') -{ 2 }-> 1 + quot(z' - 1, 1 + 0) :|: z' - 1 >= 0, z'' = 1 + 0 reverse(z') -{ 2 }-> app(app(reverse(x''), 1 + n' + 0), 1 + n + 0) :|: n >= 0, n' >= 0, z' = 1 + n + (1 + n' + x''), x'' >= 0 reverse(z') -{ 2 }-> app(0, 1 + (z' - 1) + 0) :|: z' - 1 >= 0 reverse(z') -{ 1 }-> 0 :|: z' = 0 shuffle(z') -{ 1 }-> 0 :|: z' = 0 shuffle(z') -{ 2 }-> 1 + n + shuffle(app(reverse(x1), 1 + n'' + 0)) :|: n >= 0, x1 >= 0, n'' >= 0, z' = 1 + n + (1 + n'' + x1) shuffle(z') -{ 2 }-> 1 + (z' - 1) + shuffle(0) :|: z' - 1 >= 0 Function symbols to be analyzed: {app}, {quot}, {less_leaves}, {reverse}, {shuffle} Previous analysis results are: minus: runtime: O(n^1) [1 + z''], size: O(n^1) [z'] concat: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] ---------------------------------------- (31) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: app after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z' + z'' ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: app(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 app(z', z'') -{ 1 }-> 1 + n + app(x, z'') :|: n >= 0, z' = 1 + n + x, x >= 0, z'' >= 0 concat(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 concat(z', z'') -{ 2 + v }-> 1 + u + s'' :|: s'' >= 0, s'' <= v + z'', v >= 0, z' = 1 + u + v, z'' >= 0, u >= 0 less_leaves(z', z'') -{ 3 }-> less_leaves(z' - 1, z'' - 1) :|: z' - 1 >= 0, z'' - 1 >= 0 less_leaves(z', z'') -{ 4 + v'' }-> less_leaves(z' - 1, 1 + u'' + s1) :|: s1 >= 0, s1 <= v'' + z, z' - 1 >= 0, z >= 0, z'' = 1 + (1 + u'' + v'') + z, u'' >= 0, v'' >= 0 less_leaves(z', z'') -{ 4 + v' }-> less_leaves(1 + u' + s2, z'' - 1) :|: s2 >= 0, s2 <= v' + v, v >= 0, z'' - 1 >= 0, u' >= 0, v' >= 0, z' = 1 + (1 + u' + v') + v less_leaves(z', z'') -{ 5 + v' + v2 }-> less_leaves(1 + u' + s3, 1 + u1 + s4) :|: s3 >= 0, s3 <= v' + v, s4 >= 0, s4 <= v2 + z, v >= 0, z >= 0, u' >= 0, v' >= 0, u1 >= 0, z' = 1 + (1 + u' + v') + v, z'' = 1 + (1 + u1 + v2) + z, v2 >= 0 less_leaves(z', z'') -{ 1 }-> 1 :|: z >= 0, z'' = 1 + w + z, w >= 0, z' = 0 less_leaves(z', z'') -{ 1 }-> 0 :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 + z'' }-> s :|: s >= 0, s <= z' - 1, z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 quot(z', z'') -{ 1 }-> 0 :|: z'' - 1 >= 0, z' = 0 quot(z', z'') -{ 1 + z'' }-> 1 + quot(s', 1 + (1 + (z'' - 2))) :|: s' >= 0, s' <= z' - 2, z' - 2 >= 0, z'' - 2 >= 0 quot(z', z'') -{ 1 }-> 1 + quot(0, 1 + (z'' - 1)) :|: z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'') -{ 2 }-> 1 + quot(z' - 1, 1 + 0) :|: z' - 1 >= 0, z'' = 1 + 0 reverse(z') -{ 2 }-> app(app(reverse(x''), 1 + n' + 0), 1 + n + 0) :|: n >= 0, n' >= 0, z' = 1 + n + (1 + n' + x''), x'' >= 0 reverse(z') -{ 2 }-> app(0, 1 + (z' - 1) + 0) :|: z' - 1 >= 0 reverse(z') -{ 1 }-> 0 :|: z' = 0 shuffle(z') -{ 1 }-> 0 :|: z' = 0 shuffle(z') -{ 2 }-> 1 + n + shuffle(app(reverse(x1), 1 + n'' + 0)) :|: n >= 0, x1 >= 0, n'' >= 0, z' = 1 + n + (1 + n'' + x1) shuffle(z') -{ 2 }-> 1 + (z' - 1) + shuffle(0) :|: z' - 1 >= 0 Function symbols to be analyzed: {app}, {quot}, {less_leaves}, {reverse}, {shuffle} Previous analysis results are: minus: runtime: O(n^1) [1 + z''], size: O(n^1) [z'] concat: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] app: runtime: ?, size: O(n^1) [z' + z''] ---------------------------------------- (33) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: app after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z' ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: app(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 app(z', z'') -{ 1 }-> 1 + n + app(x, z'') :|: n >= 0, z' = 1 + n + x, x >= 0, z'' >= 0 concat(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 concat(z', z'') -{ 2 + v }-> 1 + u + s'' :|: s'' >= 0, s'' <= v + z'', v >= 0, z' = 1 + u + v, z'' >= 0, u >= 0 less_leaves(z', z'') -{ 3 }-> less_leaves(z' - 1, z'' - 1) :|: z' - 1 >= 0, z'' - 1 >= 0 less_leaves(z', z'') -{ 4 + v'' }-> less_leaves(z' - 1, 1 + u'' + s1) :|: s1 >= 0, s1 <= v'' + z, z' - 1 >= 0, z >= 0, z'' = 1 + (1 + u'' + v'') + z, u'' >= 0, v'' >= 0 less_leaves(z', z'') -{ 4 + v' }-> less_leaves(1 + u' + s2, z'' - 1) :|: s2 >= 0, s2 <= v' + v, v >= 0, z'' - 1 >= 0, u' >= 0, v' >= 0, z' = 1 + (1 + u' + v') + v less_leaves(z', z'') -{ 5 + v' + v2 }-> less_leaves(1 + u' + s3, 1 + u1 + s4) :|: s3 >= 0, s3 <= v' + v, s4 >= 0, s4 <= v2 + z, v >= 0, z >= 0, u' >= 0, v' >= 0, u1 >= 0, z' = 1 + (1 + u' + v') + v, z'' = 1 + (1 + u1 + v2) + z, v2 >= 0 less_leaves(z', z'') -{ 1 }-> 1 :|: z >= 0, z'' = 1 + w + z, w >= 0, z' = 0 less_leaves(z', z'') -{ 1 }-> 0 :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 + z'' }-> s :|: s >= 0, s <= z' - 1, z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 quot(z', z'') -{ 1 }-> 0 :|: z'' - 1 >= 0, z' = 0 quot(z', z'') -{ 1 + z'' }-> 1 + quot(s', 1 + (1 + (z'' - 2))) :|: s' >= 0, s' <= z' - 2, z' - 2 >= 0, z'' - 2 >= 0 quot(z', z'') -{ 1 }-> 1 + quot(0, 1 + (z'' - 1)) :|: z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'') -{ 2 }-> 1 + quot(z' - 1, 1 + 0) :|: z' - 1 >= 0, z'' = 1 + 0 reverse(z') -{ 2 }-> app(app(reverse(x''), 1 + n' + 0), 1 + n + 0) :|: n >= 0, n' >= 0, z' = 1 + n + (1 + n' + x''), x'' >= 0 reverse(z') -{ 2 }-> app(0, 1 + (z' - 1) + 0) :|: z' - 1 >= 0 reverse(z') -{ 1 }-> 0 :|: z' = 0 shuffle(z') -{ 1 }-> 0 :|: z' = 0 shuffle(z') -{ 2 }-> 1 + n + shuffle(app(reverse(x1), 1 + n'' + 0)) :|: n >= 0, x1 >= 0, n'' >= 0, z' = 1 + n + (1 + n'' + x1) shuffle(z') -{ 2 }-> 1 + (z' - 1) + shuffle(0) :|: z' - 1 >= 0 Function symbols to be analyzed: {quot}, {less_leaves}, {reverse}, {shuffle} Previous analysis results are: minus: runtime: O(n^1) [1 + z''], size: O(n^1) [z'] concat: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] app: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] ---------------------------------------- (35) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: app(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 app(z', z'') -{ 2 + x }-> 1 + n + s5 :|: s5 >= 0, s5 <= x + z'', n >= 0, z' = 1 + n + x, x >= 0, z'' >= 0 concat(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 concat(z', z'') -{ 2 + v }-> 1 + u + s'' :|: s'' >= 0, s'' <= v + z'', v >= 0, z' = 1 + u + v, z'' >= 0, u >= 0 less_leaves(z', z'') -{ 3 }-> less_leaves(z' - 1, z'' - 1) :|: z' - 1 >= 0, z'' - 1 >= 0 less_leaves(z', z'') -{ 4 + v'' }-> less_leaves(z' - 1, 1 + u'' + s1) :|: s1 >= 0, s1 <= v'' + z, z' - 1 >= 0, z >= 0, z'' = 1 + (1 + u'' + v'') + z, u'' >= 0, v'' >= 0 less_leaves(z', z'') -{ 4 + v' }-> less_leaves(1 + u' + s2, z'' - 1) :|: s2 >= 0, s2 <= v' + v, v >= 0, z'' - 1 >= 0, u' >= 0, v' >= 0, z' = 1 + (1 + u' + v') + v less_leaves(z', z'') -{ 5 + v' + v2 }-> less_leaves(1 + u' + s3, 1 + u1 + s4) :|: s3 >= 0, s3 <= v' + v, s4 >= 0, s4 <= v2 + z, v >= 0, z >= 0, u' >= 0, v' >= 0, u1 >= 0, z' = 1 + (1 + u' + v') + v, z'' = 1 + (1 + u1 + v2) + z, v2 >= 0 less_leaves(z', z'') -{ 1 }-> 1 :|: z >= 0, z'' = 1 + w + z, w >= 0, z' = 0 less_leaves(z', z'') -{ 1 }-> 0 :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 + z'' }-> s :|: s >= 0, s <= z' - 1, z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 quot(z', z'') -{ 1 }-> 0 :|: z'' - 1 >= 0, z' = 0 quot(z', z'') -{ 1 + z'' }-> 1 + quot(s', 1 + (1 + (z'' - 2))) :|: s' >= 0, s' <= z' - 2, z' - 2 >= 0, z'' - 2 >= 0 quot(z', z'') -{ 1 }-> 1 + quot(0, 1 + (z'' - 1)) :|: z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'') -{ 2 }-> 1 + quot(z' - 1, 1 + 0) :|: z' - 1 >= 0, z'' = 1 + 0 reverse(z') -{ 3 }-> s6 :|: s6 >= 0, s6 <= 0 + (1 + (z' - 1) + 0), z' - 1 >= 0 reverse(z') -{ 2 }-> app(app(reverse(x''), 1 + n' + 0), 1 + n + 0) :|: n >= 0, n' >= 0, z' = 1 + n + (1 + n' + x''), x'' >= 0 reverse(z') -{ 1 }-> 0 :|: z' = 0 shuffle(z') -{ 1 }-> 0 :|: z' = 0 shuffle(z') -{ 2 }-> 1 + n + shuffle(app(reverse(x1), 1 + n'' + 0)) :|: n >= 0, x1 >= 0, n'' >= 0, z' = 1 + n + (1 + n'' + x1) shuffle(z') -{ 2 }-> 1 + (z' - 1) + shuffle(0) :|: z' - 1 >= 0 Function symbols to be analyzed: {quot}, {less_leaves}, {reverse}, {shuffle} Previous analysis results are: minus: runtime: O(n^1) [1 + z''], size: O(n^1) [z'] concat: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] app: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] ---------------------------------------- (37) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: quot after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z' ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: app(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 app(z', z'') -{ 2 + x }-> 1 + n + s5 :|: s5 >= 0, s5 <= x + z'', n >= 0, z' = 1 + n + x, x >= 0, z'' >= 0 concat(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 concat(z', z'') -{ 2 + v }-> 1 + u + s'' :|: s'' >= 0, s'' <= v + z'', v >= 0, z' = 1 + u + v, z'' >= 0, u >= 0 less_leaves(z', z'') -{ 3 }-> less_leaves(z' - 1, z'' - 1) :|: z' - 1 >= 0, z'' - 1 >= 0 less_leaves(z', z'') -{ 4 + v'' }-> less_leaves(z' - 1, 1 + u'' + s1) :|: s1 >= 0, s1 <= v'' + z, z' - 1 >= 0, z >= 0, z'' = 1 + (1 + u'' + v'') + z, u'' >= 0, v'' >= 0 less_leaves(z', z'') -{ 4 + v' }-> less_leaves(1 + u' + s2, z'' - 1) :|: s2 >= 0, s2 <= v' + v, v >= 0, z'' - 1 >= 0, u' >= 0, v' >= 0, z' = 1 + (1 + u' + v') + v less_leaves(z', z'') -{ 5 + v' + v2 }-> less_leaves(1 + u' + s3, 1 + u1 + s4) :|: s3 >= 0, s3 <= v' + v, s4 >= 0, s4 <= v2 + z, v >= 0, z >= 0, u' >= 0, v' >= 0, u1 >= 0, z' = 1 + (1 + u' + v') + v, z'' = 1 + (1 + u1 + v2) + z, v2 >= 0 less_leaves(z', z'') -{ 1 }-> 1 :|: z >= 0, z'' = 1 + w + z, w >= 0, z' = 0 less_leaves(z', z'') -{ 1 }-> 0 :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 + z'' }-> s :|: s >= 0, s <= z' - 1, z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 quot(z', z'') -{ 1 }-> 0 :|: z'' - 1 >= 0, z' = 0 quot(z', z'') -{ 1 + z'' }-> 1 + quot(s', 1 + (1 + (z'' - 2))) :|: s' >= 0, s' <= z' - 2, z' - 2 >= 0, z'' - 2 >= 0 quot(z', z'') -{ 1 }-> 1 + quot(0, 1 + (z'' - 1)) :|: z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'') -{ 2 }-> 1 + quot(z' - 1, 1 + 0) :|: z' - 1 >= 0, z'' = 1 + 0 reverse(z') -{ 3 }-> s6 :|: s6 >= 0, s6 <= 0 + (1 + (z' - 1) + 0), z' - 1 >= 0 reverse(z') -{ 2 }-> app(app(reverse(x''), 1 + n' + 0), 1 + n + 0) :|: n >= 0, n' >= 0, z' = 1 + n + (1 + n' + x''), x'' >= 0 reverse(z') -{ 1 }-> 0 :|: z' = 0 shuffle(z') -{ 1 }-> 0 :|: z' = 0 shuffle(z') -{ 2 }-> 1 + n + shuffle(app(reverse(x1), 1 + n'' + 0)) :|: n >= 0, x1 >= 0, n'' >= 0, z' = 1 + n + (1 + n'' + x1) shuffle(z') -{ 2 }-> 1 + (z' - 1) + shuffle(0) :|: z' - 1 >= 0 Function symbols to be analyzed: {quot}, {less_leaves}, {reverse}, {shuffle} Previous analysis results are: minus: runtime: O(n^1) [1 + z''], size: O(n^1) [z'] concat: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] app: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] quot: runtime: ?, size: O(n^1) [z'] ---------------------------------------- (39) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: quot after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 4 + 2*z' + z'*z'' + z'' ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: app(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 app(z', z'') -{ 2 + x }-> 1 + n + s5 :|: s5 >= 0, s5 <= x + z'', n >= 0, z' = 1 + n + x, x >= 0, z'' >= 0 concat(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 concat(z', z'') -{ 2 + v }-> 1 + u + s'' :|: s'' >= 0, s'' <= v + z'', v >= 0, z' = 1 + u + v, z'' >= 0, u >= 0 less_leaves(z', z'') -{ 3 }-> less_leaves(z' - 1, z'' - 1) :|: z' - 1 >= 0, z'' - 1 >= 0 less_leaves(z', z'') -{ 4 + v'' }-> less_leaves(z' - 1, 1 + u'' + s1) :|: s1 >= 0, s1 <= v'' + z, z' - 1 >= 0, z >= 0, z'' = 1 + (1 + u'' + v'') + z, u'' >= 0, v'' >= 0 less_leaves(z', z'') -{ 4 + v' }-> less_leaves(1 + u' + s2, z'' - 1) :|: s2 >= 0, s2 <= v' + v, v >= 0, z'' - 1 >= 0, u' >= 0, v' >= 0, z' = 1 + (1 + u' + v') + v less_leaves(z', z'') -{ 5 + v' + v2 }-> less_leaves(1 + u' + s3, 1 + u1 + s4) :|: s3 >= 0, s3 <= v' + v, s4 >= 0, s4 <= v2 + z, v >= 0, z >= 0, u' >= 0, v' >= 0, u1 >= 0, z' = 1 + (1 + u' + v') + v, z'' = 1 + (1 + u1 + v2) + z, v2 >= 0 less_leaves(z', z'') -{ 1 }-> 1 :|: z >= 0, z'' = 1 + w + z, w >= 0, z' = 0 less_leaves(z', z'') -{ 1 }-> 0 :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 + z'' }-> s :|: s >= 0, s <= z' - 1, z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 quot(z', z'') -{ 1 }-> 0 :|: z'' - 1 >= 0, z' = 0 quot(z', z'') -{ 1 + z'' }-> 1 + quot(s', 1 + (1 + (z'' - 2))) :|: s' >= 0, s' <= z' - 2, z' - 2 >= 0, z'' - 2 >= 0 quot(z', z'') -{ 1 }-> 1 + quot(0, 1 + (z'' - 1)) :|: z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'') -{ 2 }-> 1 + quot(z' - 1, 1 + 0) :|: z' - 1 >= 0, z'' = 1 + 0 reverse(z') -{ 3 }-> s6 :|: s6 >= 0, s6 <= 0 + (1 + (z' - 1) + 0), z' - 1 >= 0 reverse(z') -{ 2 }-> app(app(reverse(x''), 1 + n' + 0), 1 + n + 0) :|: n >= 0, n' >= 0, z' = 1 + n + (1 + n' + x''), x'' >= 0 reverse(z') -{ 1 }-> 0 :|: z' = 0 shuffle(z') -{ 1 }-> 0 :|: z' = 0 shuffle(z') -{ 2 }-> 1 + n + shuffle(app(reverse(x1), 1 + n'' + 0)) :|: n >= 0, x1 >= 0, n'' >= 0, z' = 1 + n + (1 + n'' + x1) shuffle(z') -{ 2 }-> 1 + (z' - 1) + shuffle(0) :|: z' - 1 >= 0 Function symbols to be analyzed: {less_leaves}, {reverse}, {shuffle} Previous analysis results are: minus: runtime: O(n^1) [1 + z''], size: O(n^1) [z'] concat: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] app: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] quot: runtime: O(n^2) [4 + 2*z' + z'*z'' + z''], size: O(n^1) [z'] ---------------------------------------- (41) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: app(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 app(z', z'') -{ 2 + x }-> 1 + n + s5 :|: s5 >= 0, s5 <= x + z'', n >= 0, z' = 1 + n + x, x >= 0, z'' >= 0 concat(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 concat(z', z'') -{ 2 + v }-> 1 + u + s'' :|: s'' >= 0, s'' <= v + z'', v >= 0, z' = 1 + u + v, z'' >= 0, u >= 0 less_leaves(z', z'') -{ 3 }-> less_leaves(z' - 1, z'' - 1) :|: z' - 1 >= 0, z'' - 1 >= 0 less_leaves(z', z'') -{ 4 + v'' }-> less_leaves(z' - 1, 1 + u'' + s1) :|: s1 >= 0, s1 <= v'' + z, z' - 1 >= 0, z >= 0, z'' = 1 + (1 + u'' + v'') + z, u'' >= 0, v'' >= 0 less_leaves(z', z'') -{ 4 + v' }-> less_leaves(1 + u' + s2, z'' - 1) :|: s2 >= 0, s2 <= v' + v, v >= 0, z'' - 1 >= 0, u' >= 0, v' >= 0, z' = 1 + (1 + u' + v') + v less_leaves(z', z'') -{ 5 + v' + v2 }-> less_leaves(1 + u' + s3, 1 + u1 + s4) :|: s3 >= 0, s3 <= v' + v, s4 >= 0, s4 <= v2 + z, v >= 0, z >= 0, u' >= 0, v' >= 0, u1 >= 0, z' = 1 + (1 + u' + v') + v, z'' = 1 + (1 + u1 + v2) + z, v2 >= 0 less_leaves(z', z'') -{ 1 }-> 1 :|: z >= 0, z'' = 1 + w + z, w >= 0, z' = 0 less_leaves(z', z'') -{ 1 }-> 0 :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 + z'' }-> s :|: s >= 0, s <= z' - 1, z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 quot(z', z'') -{ 1 }-> 0 :|: z'' - 1 >= 0, z' = 0 quot(z', z'') -{ 4 + 3*z' }-> 1 + s7 :|: s7 >= 0, s7 <= z' - 1, z' - 1 >= 0, z'' = 1 + 0 quot(z', z'') -{ 5 + 2*s' + s'*z'' + 2*z'' }-> 1 + s8 :|: s8 >= 0, s8 <= s', s' >= 0, s' <= z' - 2, z' - 2 >= 0, z'' - 2 >= 0 quot(z', z'') -{ 5 + z'' }-> 1 + s9 :|: s9 >= 0, s9 <= 0, z' - 1 >= 0, z'' - 1 >= 0 reverse(z') -{ 3 }-> s6 :|: s6 >= 0, s6 <= 0 + (1 + (z' - 1) + 0), z' - 1 >= 0 reverse(z') -{ 2 }-> app(app(reverse(x''), 1 + n' + 0), 1 + n + 0) :|: n >= 0, n' >= 0, z' = 1 + n + (1 + n' + x''), x'' >= 0 reverse(z') -{ 1 }-> 0 :|: z' = 0 shuffle(z') -{ 1 }-> 0 :|: z' = 0 shuffle(z') -{ 2 }-> 1 + n + shuffle(app(reverse(x1), 1 + n'' + 0)) :|: n >= 0, x1 >= 0, n'' >= 0, z' = 1 + n + (1 + n'' + x1) shuffle(z') -{ 2 }-> 1 + (z' - 1) + shuffle(0) :|: z' - 1 >= 0 Function symbols to be analyzed: {less_leaves}, {reverse}, {shuffle} Previous analysis results are: minus: runtime: O(n^1) [1 + z''], size: O(n^1) [z'] concat: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] app: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] quot: runtime: O(n^2) [4 + 2*z' + z'*z'' + z''], size: O(n^1) [z'] ---------------------------------------- (43) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: less_leaves after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: app(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 app(z', z'') -{ 2 + x }-> 1 + n + s5 :|: s5 >= 0, s5 <= x + z'', n >= 0, z' = 1 + n + x, x >= 0, z'' >= 0 concat(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 concat(z', z'') -{ 2 + v }-> 1 + u + s'' :|: s'' >= 0, s'' <= v + z'', v >= 0, z' = 1 + u + v, z'' >= 0, u >= 0 less_leaves(z', z'') -{ 3 }-> less_leaves(z' - 1, z'' - 1) :|: z' - 1 >= 0, z'' - 1 >= 0 less_leaves(z', z'') -{ 4 + v'' }-> less_leaves(z' - 1, 1 + u'' + s1) :|: s1 >= 0, s1 <= v'' + z, z' - 1 >= 0, z >= 0, z'' = 1 + (1 + u'' + v'') + z, u'' >= 0, v'' >= 0 less_leaves(z', z'') -{ 4 + v' }-> less_leaves(1 + u' + s2, z'' - 1) :|: s2 >= 0, s2 <= v' + v, v >= 0, z'' - 1 >= 0, u' >= 0, v' >= 0, z' = 1 + (1 + u' + v') + v less_leaves(z', z'') -{ 5 + v' + v2 }-> less_leaves(1 + u' + s3, 1 + u1 + s4) :|: s3 >= 0, s3 <= v' + v, s4 >= 0, s4 <= v2 + z, v >= 0, z >= 0, u' >= 0, v' >= 0, u1 >= 0, z' = 1 + (1 + u' + v') + v, z'' = 1 + (1 + u1 + v2) + z, v2 >= 0 less_leaves(z', z'') -{ 1 }-> 1 :|: z >= 0, z'' = 1 + w + z, w >= 0, z' = 0 less_leaves(z', z'') -{ 1 }-> 0 :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 + z'' }-> s :|: s >= 0, s <= z' - 1, z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 quot(z', z'') -{ 1 }-> 0 :|: z'' - 1 >= 0, z' = 0 quot(z', z'') -{ 4 + 3*z' }-> 1 + s7 :|: s7 >= 0, s7 <= z' - 1, z' - 1 >= 0, z'' = 1 + 0 quot(z', z'') -{ 5 + 2*s' + s'*z'' + 2*z'' }-> 1 + s8 :|: s8 >= 0, s8 <= s', s' >= 0, s' <= z' - 2, z' - 2 >= 0, z'' - 2 >= 0 quot(z', z'') -{ 5 + z'' }-> 1 + s9 :|: s9 >= 0, s9 <= 0, z' - 1 >= 0, z'' - 1 >= 0 reverse(z') -{ 3 }-> s6 :|: s6 >= 0, s6 <= 0 + (1 + (z' - 1) + 0), z' - 1 >= 0 reverse(z') -{ 2 }-> app(app(reverse(x''), 1 + n' + 0), 1 + n + 0) :|: n >= 0, n' >= 0, z' = 1 + n + (1 + n' + x''), x'' >= 0 reverse(z') -{ 1 }-> 0 :|: z' = 0 shuffle(z') -{ 1 }-> 0 :|: z' = 0 shuffle(z') -{ 2 }-> 1 + n + shuffle(app(reverse(x1), 1 + n'' + 0)) :|: n >= 0, x1 >= 0, n'' >= 0, z' = 1 + n + (1 + n'' + x1) shuffle(z') -{ 2 }-> 1 + (z' - 1) + shuffle(0) :|: z' - 1 >= 0 Function symbols to be analyzed: {less_leaves}, {reverse}, {shuffle} Previous analysis results are: minus: runtime: O(n^1) [1 + z''], size: O(n^1) [z'] concat: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] app: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] quot: runtime: O(n^2) [4 + 2*z' + z'*z'' + z''], size: O(n^1) [z'] less_leaves: runtime: ?, size: O(1) [1] ---------------------------------------- (45) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: less_leaves after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 1 + 3*z' + z'*z'' + z'^2 ---------------------------------------- (46) Obligation: Complexity RNTS consisting of the following rules: app(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 app(z', z'') -{ 2 + x }-> 1 + n + s5 :|: s5 >= 0, s5 <= x + z'', n >= 0, z' = 1 + n + x, x >= 0, z'' >= 0 concat(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 concat(z', z'') -{ 2 + v }-> 1 + u + s'' :|: s'' >= 0, s'' <= v + z'', v >= 0, z' = 1 + u + v, z'' >= 0, u >= 0 less_leaves(z', z'') -{ 3 }-> less_leaves(z' - 1, z'' - 1) :|: z' - 1 >= 0, z'' - 1 >= 0 less_leaves(z', z'') -{ 4 + v'' }-> less_leaves(z' - 1, 1 + u'' + s1) :|: s1 >= 0, s1 <= v'' + z, z' - 1 >= 0, z >= 0, z'' = 1 + (1 + u'' + v'') + z, u'' >= 0, v'' >= 0 less_leaves(z', z'') -{ 4 + v' }-> less_leaves(1 + u' + s2, z'' - 1) :|: s2 >= 0, s2 <= v' + v, v >= 0, z'' - 1 >= 0, u' >= 0, v' >= 0, z' = 1 + (1 + u' + v') + v less_leaves(z', z'') -{ 5 + v' + v2 }-> less_leaves(1 + u' + s3, 1 + u1 + s4) :|: s3 >= 0, s3 <= v' + v, s4 >= 0, s4 <= v2 + z, v >= 0, z >= 0, u' >= 0, v' >= 0, u1 >= 0, z' = 1 + (1 + u' + v') + v, z'' = 1 + (1 + u1 + v2) + z, v2 >= 0 less_leaves(z', z'') -{ 1 }-> 1 :|: z >= 0, z'' = 1 + w + z, w >= 0, z' = 0 less_leaves(z', z'') -{ 1 }-> 0 :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 + z'' }-> s :|: s >= 0, s <= z' - 1, z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 quot(z', z'') -{ 1 }-> 0 :|: z'' - 1 >= 0, z' = 0 quot(z', z'') -{ 4 + 3*z' }-> 1 + s7 :|: s7 >= 0, s7 <= z' - 1, z' - 1 >= 0, z'' = 1 + 0 quot(z', z'') -{ 5 + 2*s' + s'*z'' + 2*z'' }-> 1 + s8 :|: s8 >= 0, s8 <= s', s' >= 0, s' <= z' - 2, z' - 2 >= 0, z'' - 2 >= 0 quot(z', z'') -{ 5 + z'' }-> 1 + s9 :|: s9 >= 0, s9 <= 0, z' - 1 >= 0, z'' - 1 >= 0 reverse(z') -{ 3 }-> s6 :|: s6 >= 0, s6 <= 0 + (1 + (z' - 1) + 0), z' - 1 >= 0 reverse(z') -{ 2 }-> app(app(reverse(x''), 1 + n' + 0), 1 + n + 0) :|: n >= 0, n' >= 0, z' = 1 + n + (1 + n' + x''), x'' >= 0 reverse(z') -{ 1 }-> 0 :|: z' = 0 shuffle(z') -{ 1 }-> 0 :|: z' = 0 shuffle(z') -{ 2 }-> 1 + n + shuffle(app(reverse(x1), 1 + n'' + 0)) :|: n >= 0, x1 >= 0, n'' >= 0, z' = 1 + n + (1 + n'' + x1) shuffle(z') -{ 2 }-> 1 + (z' - 1) + shuffle(0) :|: z' - 1 >= 0 Function symbols to be analyzed: {reverse}, {shuffle} Previous analysis results are: minus: runtime: O(n^1) [1 + z''], size: O(n^1) [z'] concat: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] app: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] quot: runtime: O(n^2) [4 + 2*z' + z'*z'' + z''], size: O(n^1) [z'] less_leaves: runtime: O(n^2) [1 + 3*z' + z'*z'' + z'^2], size: O(1) [1] ---------------------------------------- (47) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (48) Obligation: Complexity RNTS consisting of the following rules: app(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 app(z', z'') -{ 2 + x }-> 1 + n + s5 :|: s5 >= 0, s5 <= x + z'', n >= 0, z' = 1 + n + x, x >= 0, z'' >= 0 concat(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 concat(z', z'') -{ 2 + v }-> 1 + u + s'' :|: s'' >= 0, s'' <= v + z'', v >= 0, z' = 1 + u + v, z'' >= 0, u >= 0 less_leaves(z', z'') -{ 3 + z'*z'' + z'^2 + -1*z'' }-> s10 :|: s10 >= 0, s10 <= 1, z' - 1 >= 0, z'' - 1 >= 0 less_leaves(z', z'') -{ 2 + -1*s1 + s1*z' + -1*u'' + u''*z' + v'' + 2*z' + z'^2 }-> s11 :|: s11 >= 0, s11 <= 1, s1 >= 0, s1 <= v'' + z, z' - 1 >= 0, z >= 0, z'' = 1 + (1 + u'' + v'') + z, u'' >= 0, v'' >= 0 less_leaves(z', z'') -{ 8 + 4*s2 + 2*s2*u' + s2*z'' + s2^2 + 4*u' + u'*z'' + u'^2 + v' + z'' }-> s12 :|: s12 >= 0, s12 <= 1, s2 >= 0, s2 <= v' + v, v >= 0, z'' - 1 >= 0, u' >= 0, v' >= 0, z' = 1 + (1 + u' + v') + v less_leaves(z', z'') -{ 11 + 6*s3 + s3*s4 + 2*s3*u' + s3*u1 + s3^2 + s4 + s4*u' + 6*u' + u'*u1 + u'^2 + u1 + v' + v2 }-> s13 :|: s13 >= 0, s13 <= 1, s3 >= 0, s3 <= v' + v, s4 >= 0, s4 <= v2 + z, v >= 0, z >= 0, u' >= 0, v' >= 0, u1 >= 0, z' = 1 + (1 + u' + v') + v, z'' = 1 + (1 + u1 + v2) + z, v2 >= 0 less_leaves(z', z'') -{ 1 }-> 1 :|: z >= 0, z'' = 1 + w + z, w >= 0, z' = 0 less_leaves(z', z'') -{ 1 }-> 0 :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 + z'' }-> s :|: s >= 0, s <= z' - 1, z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 quot(z', z'') -{ 1 }-> 0 :|: z'' - 1 >= 0, z' = 0 quot(z', z'') -{ 4 + 3*z' }-> 1 + s7 :|: s7 >= 0, s7 <= z' - 1, z' - 1 >= 0, z'' = 1 + 0 quot(z', z'') -{ 5 + 2*s' + s'*z'' + 2*z'' }-> 1 + s8 :|: s8 >= 0, s8 <= s', s' >= 0, s' <= z' - 2, z' - 2 >= 0, z'' - 2 >= 0 quot(z', z'') -{ 5 + z'' }-> 1 + s9 :|: s9 >= 0, s9 <= 0, z' - 1 >= 0, z'' - 1 >= 0 reverse(z') -{ 3 }-> s6 :|: s6 >= 0, s6 <= 0 + (1 + (z' - 1) + 0), z' - 1 >= 0 reverse(z') -{ 2 }-> app(app(reverse(x''), 1 + n' + 0), 1 + n + 0) :|: n >= 0, n' >= 0, z' = 1 + n + (1 + n' + x''), x'' >= 0 reverse(z') -{ 1 }-> 0 :|: z' = 0 shuffle(z') -{ 1 }-> 0 :|: z' = 0 shuffle(z') -{ 2 }-> 1 + n + shuffle(app(reverse(x1), 1 + n'' + 0)) :|: n >= 0, x1 >= 0, n'' >= 0, z' = 1 + n + (1 + n'' + x1) shuffle(z') -{ 2 }-> 1 + (z' - 1) + shuffle(0) :|: z' - 1 >= 0 Function symbols to be analyzed: {reverse}, {shuffle} Previous analysis results are: minus: runtime: O(n^1) [1 + z''], size: O(n^1) [z'] concat: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] app: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] quot: runtime: O(n^2) [4 + 2*z' + z'*z'' + z''], size: O(n^1) [z'] less_leaves: runtime: O(n^2) [1 + 3*z' + z'*z'' + z'^2], size: O(1) [1] ---------------------------------------- (49) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: reverse after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z' ---------------------------------------- (50) Obligation: Complexity RNTS consisting of the following rules: app(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 app(z', z'') -{ 2 + x }-> 1 + n + s5 :|: s5 >= 0, s5 <= x + z'', n >= 0, z' = 1 + n + x, x >= 0, z'' >= 0 concat(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 concat(z', z'') -{ 2 + v }-> 1 + u + s'' :|: s'' >= 0, s'' <= v + z'', v >= 0, z' = 1 + u + v, z'' >= 0, u >= 0 less_leaves(z', z'') -{ 3 + z'*z'' + z'^2 + -1*z'' }-> s10 :|: s10 >= 0, s10 <= 1, z' - 1 >= 0, z'' - 1 >= 0 less_leaves(z', z'') -{ 2 + -1*s1 + s1*z' + -1*u'' + u''*z' + v'' + 2*z' + z'^2 }-> s11 :|: s11 >= 0, s11 <= 1, s1 >= 0, s1 <= v'' + z, z' - 1 >= 0, z >= 0, z'' = 1 + (1 + u'' + v'') + z, u'' >= 0, v'' >= 0 less_leaves(z', z'') -{ 8 + 4*s2 + 2*s2*u' + s2*z'' + s2^2 + 4*u' + u'*z'' + u'^2 + v' + z'' }-> s12 :|: s12 >= 0, s12 <= 1, s2 >= 0, s2 <= v' + v, v >= 0, z'' - 1 >= 0, u' >= 0, v' >= 0, z' = 1 + (1 + u' + v') + v less_leaves(z', z'') -{ 11 + 6*s3 + s3*s4 + 2*s3*u' + s3*u1 + s3^2 + s4 + s4*u' + 6*u' + u'*u1 + u'^2 + u1 + v' + v2 }-> s13 :|: s13 >= 0, s13 <= 1, s3 >= 0, s3 <= v' + v, s4 >= 0, s4 <= v2 + z, v >= 0, z >= 0, u' >= 0, v' >= 0, u1 >= 0, z' = 1 + (1 + u' + v') + v, z'' = 1 + (1 + u1 + v2) + z, v2 >= 0 less_leaves(z', z'') -{ 1 }-> 1 :|: z >= 0, z'' = 1 + w + z, w >= 0, z' = 0 less_leaves(z', z'') -{ 1 }-> 0 :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 + z'' }-> s :|: s >= 0, s <= z' - 1, z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 quot(z', z'') -{ 1 }-> 0 :|: z'' - 1 >= 0, z' = 0 quot(z', z'') -{ 4 + 3*z' }-> 1 + s7 :|: s7 >= 0, s7 <= z' - 1, z' - 1 >= 0, z'' = 1 + 0 quot(z', z'') -{ 5 + 2*s' + s'*z'' + 2*z'' }-> 1 + s8 :|: s8 >= 0, s8 <= s', s' >= 0, s' <= z' - 2, z' - 2 >= 0, z'' - 2 >= 0 quot(z', z'') -{ 5 + z'' }-> 1 + s9 :|: s9 >= 0, s9 <= 0, z' - 1 >= 0, z'' - 1 >= 0 reverse(z') -{ 3 }-> s6 :|: s6 >= 0, s6 <= 0 + (1 + (z' - 1) + 0), z' - 1 >= 0 reverse(z') -{ 2 }-> app(app(reverse(x''), 1 + n' + 0), 1 + n + 0) :|: n >= 0, n' >= 0, z' = 1 + n + (1 + n' + x''), x'' >= 0 reverse(z') -{ 1 }-> 0 :|: z' = 0 shuffle(z') -{ 1 }-> 0 :|: z' = 0 shuffle(z') -{ 2 }-> 1 + n + shuffle(app(reverse(x1), 1 + n'' + 0)) :|: n >= 0, x1 >= 0, n'' >= 0, z' = 1 + n + (1 + n'' + x1) shuffle(z') -{ 2 }-> 1 + (z' - 1) + shuffle(0) :|: z' - 1 >= 0 Function symbols to be analyzed: {reverse}, {shuffle} Previous analysis results are: minus: runtime: O(n^1) [1 + z''], size: O(n^1) [z'] concat: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] app: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] quot: runtime: O(n^2) [4 + 2*z' + z'*z'' + z''], size: O(n^1) [z'] less_leaves: runtime: O(n^2) [1 + 3*z' + z'*z'' + z'^2], size: O(1) [1] reverse: runtime: ?, size: O(n^1) [z'] ---------------------------------------- (51) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: reverse after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 4 + 3*z' + 2*z'^2 ---------------------------------------- (52) Obligation: Complexity RNTS consisting of the following rules: app(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 app(z', z'') -{ 2 + x }-> 1 + n + s5 :|: s5 >= 0, s5 <= x + z'', n >= 0, z' = 1 + n + x, x >= 0, z'' >= 0 concat(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 concat(z', z'') -{ 2 + v }-> 1 + u + s'' :|: s'' >= 0, s'' <= v + z'', v >= 0, z' = 1 + u + v, z'' >= 0, u >= 0 less_leaves(z', z'') -{ 3 + z'*z'' + z'^2 + -1*z'' }-> s10 :|: s10 >= 0, s10 <= 1, z' - 1 >= 0, z'' - 1 >= 0 less_leaves(z', z'') -{ 2 + -1*s1 + s1*z' + -1*u'' + u''*z' + v'' + 2*z' + z'^2 }-> s11 :|: s11 >= 0, s11 <= 1, s1 >= 0, s1 <= v'' + z, z' - 1 >= 0, z >= 0, z'' = 1 + (1 + u'' + v'') + z, u'' >= 0, v'' >= 0 less_leaves(z', z'') -{ 8 + 4*s2 + 2*s2*u' + s2*z'' + s2^2 + 4*u' + u'*z'' + u'^2 + v' + z'' }-> s12 :|: s12 >= 0, s12 <= 1, s2 >= 0, s2 <= v' + v, v >= 0, z'' - 1 >= 0, u' >= 0, v' >= 0, z' = 1 + (1 + u' + v') + v less_leaves(z', z'') -{ 11 + 6*s3 + s3*s4 + 2*s3*u' + s3*u1 + s3^2 + s4 + s4*u' + 6*u' + u'*u1 + u'^2 + u1 + v' + v2 }-> s13 :|: s13 >= 0, s13 <= 1, s3 >= 0, s3 <= v' + v, s4 >= 0, s4 <= v2 + z, v >= 0, z >= 0, u' >= 0, v' >= 0, u1 >= 0, z' = 1 + (1 + u' + v') + v, z'' = 1 + (1 + u1 + v2) + z, v2 >= 0 less_leaves(z', z'') -{ 1 }-> 1 :|: z >= 0, z'' = 1 + w + z, w >= 0, z' = 0 less_leaves(z', z'') -{ 1 }-> 0 :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 + z'' }-> s :|: s >= 0, s <= z' - 1, z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 quot(z', z'') -{ 1 }-> 0 :|: z'' - 1 >= 0, z' = 0 quot(z', z'') -{ 4 + 3*z' }-> 1 + s7 :|: s7 >= 0, s7 <= z' - 1, z' - 1 >= 0, z'' = 1 + 0 quot(z', z'') -{ 5 + 2*s' + s'*z'' + 2*z'' }-> 1 + s8 :|: s8 >= 0, s8 <= s', s' >= 0, s' <= z' - 2, z' - 2 >= 0, z'' - 2 >= 0 quot(z', z'') -{ 5 + z'' }-> 1 + s9 :|: s9 >= 0, s9 <= 0, z' - 1 >= 0, z'' - 1 >= 0 reverse(z') -{ 3 }-> s6 :|: s6 >= 0, s6 <= 0 + (1 + (z' - 1) + 0), z' - 1 >= 0 reverse(z') -{ 2 }-> app(app(reverse(x''), 1 + n' + 0), 1 + n + 0) :|: n >= 0, n' >= 0, z' = 1 + n + (1 + n' + x''), x'' >= 0 reverse(z') -{ 1 }-> 0 :|: z' = 0 shuffle(z') -{ 1 }-> 0 :|: z' = 0 shuffle(z') -{ 2 }-> 1 + n + shuffle(app(reverse(x1), 1 + n'' + 0)) :|: n >= 0, x1 >= 0, n'' >= 0, z' = 1 + n + (1 + n'' + x1) shuffle(z') -{ 2 }-> 1 + (z' - 1) + shuffle(0) :|: z' - 1 >= 0 Function symbols to be analyzed: {shuffle} Previous analysis results are: minus: runtime: O(n^1) [1 + z''], size: O(n^1) [z'] concat: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] app: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] quot: runtime: O(n^2) [4 + 2*z' + z'*z'' + z''], size: O(n^1) [z'] less_leaves: runtime: O(n^2) [1 + 3*z' + z'*z'' + z'^2], size: O(1) [1] reverse: runtime: O(n^2) [4 + 3*z' + 2*z'^2], size: O(n^1) [z'] ---------------------------------------- (53) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (54) Obligation: Complexity RNTS consisting of the following rules: app(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 app(z', z'') -{ 2 + x }-> 1 + n + s5 :|: s5 >= 0, s5 <= x + z'', n >= 0, z' = 1 + n + x, x >= 0, z'' >= 0 concat(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 concat(z', z'') -{ 2 + v }-> 1 + u + s'' :|: s'' >= 0, s'' <= v + z'', v >= 0, z' = 1 + u + v, z'' >= 0, u >= 0 less_leaves(z', z'') -{ 3 + z'*z'' + z'^2 + -1*z'' }-> s10 :|: s10 >= 0, s10 <= 1, z' - 1 >= 0, z'' - 1 >= 0 less_leaves(z', z'') -{ 2 + -1*s1 + s1*z' + -1*u'' + u''*z' + v'' + 2*z' + z'^2 }-> s11 :|: s11 >= 0, s11 <= 1, s1 >= 0, s1 <= v'' + z, z' - 1 >= 0, z >= 0, z'' = 1 + (1 + u'' + v'') + z, u'' >= 0, v'' >= 0 less_leaves(z', z'') -{ 8 + 4*s2 + 2*s2*u' + s2*z'' + s2^2 + 4*u' + u'*z'' + u'^2 + v' + z'' }-> s12 :|: s12 >= 0, s12 <= 1, s2 >= 0, s2 <= v' + v, v >= 0, z'' - 1 >= 0, u' >= 0, v' >= 0, z' = 1 + (1 + u' + v') + v less_leaves(z', z'') -{ 11 + 6*s3 + s3*s4 + 2*s3*u' + s3*u1 + s3^2 + s4 + s4*u' + 6*u' + u'*u1 + u'^2 + u1 + v' + v2 }-> s13 :|: s13 >= 0, s13 <= 1, s3 >= 0, s3 <= v' + v, s4 >= 0, s4 <= v2 + z, v >= 0, z >= 0, u' >= 0, v' >= 0, u1 >= 0, z' = 1 + (1 + u' + v') + v, z'' = 1 + (1 + u1 + v2) + z, v2 >= 0 less_leaves(z', z'') -{ 1 }-> 1 :|: z >= 0, z'' = 1 + w + z, w >= 0, z' = 0 less_leaves(z', z'') -{ 1 }-> 0 :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 + z'' }-> s :|: s >= 0, s <= z' - 1, z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 quot(z', z'') -{ 1 }-> 0 :|: z'' - 1 >= 0, z' = 0 quot(z', z'') -{ 4 + 3*z' }-> 1 + s7 :|: s7 >= 0, s7 <= z' - 1, z' - 1 >= 0, z'' = 1 + 0 quot(z', z'') -{ 5 + 2*s' + s'*z'' + 2*z'' }-> 1 + s8 :|: s8 >= 0, s8 <= s', s' >= 0, s' <= z' - 2, z' - 2 >= 0, z'' - 2 >= 0 quot(z', z'') -{ 5 + z'' }-> 1 + s9 :|: s9 >= 0, s9 <= 0, z' - 1 >= 0, z'' - 1 >= 0 reverse(z') -{ 8 + s14 + s15 + 3*x'' + 2*x''^2 }-> s16 :|: s14 >= 0, s14 <= x'', s15 >= 0, s15 <= s14 + (1 + n' + 0), s16 >= 0, s16 <= s15 + (1 + n + 0), n >= 0, n' >= 0, z' = 1 + n + (1 + n' + x''), x'' >= 0 reverse(z') -{ 3 }-> s6 :|: s6 >= 0, s6 <= 0 + (1 + (z' - 1) + 0), z' - 1 >= 0 reverse(z') -{ 1 }-> 0 :|: z' = 0 shuffle(z') -{ 1 }-> 0 :|: z' = 0 shuffle(z') -{ 7 + s17 + 3*x1 + 2*x1^2 }-> 1 + n + shuffle(s18) :|: s17 >= 0, s17 <= x1, s18 >= 0, s18 <= s17 + (1 + n'' + 0), n >= 0, x1 >= 0, n'' >= 0, z' = 1 + n + (1 + n'' + x1) shuffle(z') -{ 2 }-> 1 + (z' - 1) + shuffle(0) :|: z' - 1 >= 0 Function symbols to be analyzed: {shuffle} Previous analysis results are: minus: runtime: O(n^1) [1 + z''], size: O(n^1) [z'] concat: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] app: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] quot: runtime: O(n^2) [4 + 2*z' + z'*z'' + z''], size: O(n^1) [z'] less_leaves: runtime: O(n^2) [1 + 3*z' + z'*z'' + z'^2], size: O(1) [1] reverse: runtime: O(n^2) [4 + 3*z' + 2*z'^2], size: O(n^1) [z'] ---------------------------------------- (55) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: shuffle after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z' ---------------------------------------- (56) Obligation: Complexity RNTS consisting of the following rules: app(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 app(z', z'') -{ 2 + x }-> 1 + n + s5 :|: s5 >= 0, s5 <= x + z'', n >= 0, z' = 1 + n + x, x >= 0, z'' >= 0 concat(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 concat(z', z'') -{ 2 + v }-> 1 + u + s'' :|: s'' >= 0, s'' <= v + z'', v >= 0, z' = 1 + u + v, z'' >= 0, u >= 0 less_leaves(z', z'') -{ 3 + z'*z'' + z'^2 + -1*z'' }-> s10 :|: s10 >= 0, s10 <= 1, z' - 1 >= 0, z'' - 1 >= 0 less_leaves(z', z'') -{ 2 + -1*s1 + s1*z' + -1*u'' + u''*z' + v'' + 2*z' + z'^2 }-> s11 :|: s11 >= 0, s11 <= 1, s1 >= 0, s1 <= v'' + z, z' - 1 >= 0, z >= 0, z'' = 1 + (1 + u'' + v'') + z, u'' >= 0, v'' >= 0 less_leaves(z', z'') -{ 8 + 4*s2 + 2*s2*u' + s2*z'' + s2^2 + 4*u' + u'*z'' + u'^2 + v' + z'' }-> s12 :|: s12 >= 0, s12 <= 1, s2 >= 0, s2 <= v' + v, v >= 0, z'' - 1 >= 0, u' >= 0, v' >= 0, z' = 1 + (1 + u' + v') + v less_leaves(z', z'') -{ 11 + 6*s3 + s3*s4 + 2*s3*u' + s3*u1 + s3^2 + s4 + s4*u' + 6*u' + u'*u1 + u'^2 + u1 + v' + v2 }-> s13 :|: s13 >= 0, s13 <= 1, s3 >= 0, s3 <= v' + v, s4 >= 0, s4 <= v2 + z, v >= 0, z >= 0, u' >= 0, v' >= 0, u1 >= 0, z' = 1 + (1 + u' + v') + v, z'' = 1 + (1 + u1 + v2) + z, v2 >= 0 less_leaves(z', z'') -{ 1 }-> 1 :|: z >= 0, z'' = 1 + w + z, w >= 0, z' = 0 less_leaves(z', z'') -{ 1 }-> 0 :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 + z'' }-> s :|: s >= 0, s <= z' - 1, z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 quot(z', z'') -{ 1 }-> 0 :|: z'' - 1 >= 0, z' = 0 quot(z', z'') -{ 4 + 3*z' }-> 1 + s7 :|: s7 >= 0, s7 <= z' - 1, z' - 1 >= 0, z'' = 1 + 0 quot(z', z'') -{ 5 + 2*s' + s'*z'' + 2*z'' }-> 1 + s8 :|: s8 >= 0, s8 <= s', s' >= 0, s' <= z' - 2, z' - 2 >= 0, z'' - 2 >= 0 quot(z', z'') -{ 5 + z'' }-> 1 + s9 :|: s9 >= 0, s9 <= 0, z' - 1 >= 0, z'' - 1 >= 0 reverse(z') -{ 8 + s14 + s15 + 3*x'' + 2*x''^2 }-> s16 :|: s14 >= 0, s14 <= x'', s15 >= 0, s15 <= s14 + (1 + n' + 0), s16 >= 0, s16 <= s15 + (1 + n + 0), n >= 0, n' >= 0, z' = 1 + n + (1 + n' + x''), x'' >= 0 reverse(z') -{ 3 }-> s6 :|: s6 >= 0, s6 <= 0 + (1 + (z' - 1) + 0), z' - 1 >= 0 reverse(z') -{ 1 }-> 0 :|: z' = 0 shuffle(z') -{ 1 }-> 0 :|: z' = 0 shuffle(z') -{ 7 + s17 + 3*x1 + 2*x1^2 }-> 1 + n + shuffle(s18) :|: s17 >= 0, s17 <= x1, s18 >= 0, s18 <= s17 + (1 + n'' + 0), n >= 0, x1 >= 0, n'' >= 0, z' = 1 + n + (1 + n'' + x1) shuffle(z') -{ 2 }-> 1 + (z' - 1) + shuffle(0) :|: z' - 1 >= 0 Function symbols to be analyzed: {shuffle} Previous analysis results are: minus: runtime: O(n^1) [1 + z''], size: O(n^1) [z'] concat: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] app: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] quot: runtime: O(n^2) [4 + 2*z' + z'*z'' + z''], size: O(n^1) [z'] less_leaves: runtime: O(n^2) [1 + 3*z' + z'*z'' + z'^2], size: O(1) [1] reverse: runtime: O(n^2) [4 + 3*z' + 2*z'^2], size: O(n^1) [z'] shuffle: runtime: ?, size: O(n^1) [z'] ---------------------------------------- (57) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: shuffle after applying outer abstraction to obtain an ITS, resulting in: O(n^3) with polynomial bound: 1 + 9*z' + 4*z'^2 + 2*z'^3 ---------------------------------------- (58) Obligation: Complexity RNTS consisting of the following rules: app(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 app(z', z'') -{ 2 + x }-> 1 + n + s5 :|: s5 >= 0, s5 <= x + z'', n >= 0, z' = 1 + n + x, x >= 0, z'' >= 0 concat(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 concat(z', z'') -{ 2 + v }-> 1 + u + s'' :|: s'' >= 0, s'' <= v + z'', v >= 0, z' = 1 + u + v, z'' >= 0, u >= 0 less_leaves(z', z'') -{ 3 + z'*z'' + z'^2 + -1*z'' }-> s10 :|: s10 >= 0, s10 <= 1, z' - 1 >= 0, z'' - 1 >= 0 less_leaves(z', z'') -{ 2 + -1*s1 + s1*z' + -1*u'' + u''*z' + v'' + 2*z' + z'^2 }-> s11 :|: s11 >= 0, s11 <= 1, s1 >= 0, s1 <= v'' + z, z' - 1 >= 0, z >= 0, z'' = 1 + (1 + u'' + v'') + z, u'' >= 0, v'' >= 0 less_leaves(z', z'') -{ 8 + 4*s2 + 2*s2*u' + s2*z'' + s2^2 + 4*u' + u'*z'' + u'^2 + v' + z'' }-> s12 :|: s12 >= 0, s12 <= 1, s2 >= 0, s2 <= v' + v, v >= 0, z'' - 1 >= 0, u' >= 0, v' >= 0, z' = 1 + (1 + u' + v') + v less_leaves(z', z'') -{ 11 + 6*s3 + s3*s4 + 2*s3*u' + s3*u1 + s3^2 + s4 + s4*u' + 6*u' + u'*u1 + u'^2 + u1 + v' + v2 }-> s13 :|: s13 >= 0, s13 <= 1, s3 >= 0, s3 <= v' + v, s4 >= 0, s4 <= v2 + z, v >= 0, z >= 0, u' >= 0, v' >= 0, u1 >= 0, z' = 1 + (1 + u' + v') + v, z'' = 1 + (1 + u1 + v2) + z, v2 >= 0 less_leaves(z', z'') -{ 1 }-> 1 :|: z >= 0, z'' = 1 + w + z, w >= 0, z' = 0 less_leaves(z', z'') -{ 1 }-> 0 :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 + z'' }-> s :|: s >= 0, s <= z' - 1, z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 quot(z', z'') -{ 1 }-> 0 :|: z'' - 1 >= 0, z' = 0 quot(z', z'') -{ 4 + 3*z' }-> 1 + s7 :|: s7 >= 0, s7 <= z' - 1, z' - 1 >= 0, z'' = 1 + 0 quot(z', z'') -{ 5 + 2*s' + s'*z'' + 2*z'' }-> 1 + s8 :|: s8 >= 0, s8 <= s', s' >= 0, s' <= z' - 2, z' - 2 >= 0, z'' - 2 >= 0 quot(z', z'') -{ 5 + z'' }-> 1 + s9 :|: s9 >= 0, s9 <= 0, z' - 1 >= 0, z'' - 1 >= 0 reverse(z') -{ 8 + s14 + s15 + 3*x'' + 2*x''^2 }-> s16 :|: s14 >= 0, s14 <= x'', s15 >= 0, s15 <= s14 + (1 + n' + 0), s16 >= 0, s16 <= s15 + (1 + n + 0), n >= 0, n' >= 0, z' = 1 + n + (1 + n' + x''), x'' >= 0 reverse(z') -{ 3 }-> s6 :|: s6 >= 0, s6 <= 0 + (1 + (z' - 1) + 0), z' - 1 >= 0 reverse(z') -{ 1 }-> 0 :|: z' = 0 shuffle(z') -{ 1 }-> 0 :|: z' = 0 shuffle(z') -{ 7 + s17 + 3*x1 + 2*x1^2 }-> 1 + n + shuffle(s18) :|: s17 >= 0, s17 <= x1, s18 >= 0, s18 <= s17 + (1 + n'' + 0), n >= 0, x1 >= 0, n'' >= 0, z' = 1 + n + (1 + n'' + x1) shuffle(z') -{ 2 }-> 1 + (z' - 1) + shuffle(0) :|: z' - 1 >= 0 Function symbols to be analyzed: Previous analysis results are: minus: runtime: O(n^1) [1 + z''], size: O(n^1) [z'] concat: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] app: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] quot: runtime: O(n^2) [4 + 2*z' + z'*z'' + z''], size: O(n^1) [z'] less_leaves: runtime: O(n^2) [1 + 3*z' + z'*z'' + z'^2], size: O(1) [1] reverse: runtime: O(n^2) [4 + 3*z' + 2*z'^2], size: O(n^1) [z'] shuffle: runtime: O(n^3) [1 + 9*z' + 4*z'^2 + 2*z'^3], size: O(n^1) [z'] ---------------------------------------- (59) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (60) BOUNDS(1, n^3) ---------------------------------------- (61) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (62) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^3, INF). The TRS R consists of the following rules: minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) quot(0', s(y)) -> 0' quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) reverse(nil) -> nil reverse(add(n, x)) -> app(reverse(x), add(n, nil)) shuffle(nil) -> nil shuffle(add(n, x)) -> add(n, shuffle(reverse(x))) concat(leaf, y) -> y concat(cons(u, v), y) -> cons(u, concat(v, y)) less_leaves(x, leaf) -> false less_leaves(leaf, cons(w, z)) -> true less_leaves(cons(u, v), cons(w, z)) -> less_leaves(concat(u, v), concat(w, z)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (63) SlicingProof (LOWER BOUND(ID)) Sliced the following arguments: add/0 ---------------------------------------- (64) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^3, INF). The TRS R consists of the following rules: minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) quot(0', s(y)) -> 0' quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) app(nil, y) -> y app(add(x), y) -> add(app(x, y)) reverse(nil) -> nil reverse(add(x)) -> app(reverse(x), add(nil)) shuffle(nil) -> nil shuffle(add(x)) -> add(shuffle(reverse(x))) concat(leaf, y) -> y concat(cons(u, v), y) -> cons(u, concat(v, y)) less_leaves(x, leaf) -> false less_leaves(leaf, cons(w, z)) -> true less_leaves(cons(u, v), cons(w, z)) -> less_leaves(concat(u, v), concat(w, z)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (65) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (66) Obligation: TRS: Rules: minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) quot(0', s(y)) -> 0' quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) app(nil, y) -> y app(add(x), y) -> add(app(x, y)) reverse(nil) -> nil reverse(add(x)) -> app(reverse(x), add(nil)) shuffle(nil) -> nil shuffle(add(x)) -> add(shuffle(reverse(x))) concat(leaf, y) -> y concat(cons(u, v), y) -> cons(u, concat(v, y)) less_leaves(x, leaf) -> false less_leaves(leaf, cons(w, z)) -> true less_leaves(cons(u, v), cons(w, z)) -> less_leaves(concat(u, v), concat(w, z)) Types: minus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s app :: nil:add -> nil:add -> nil:add nil :: nil:add add :: nil:add -> nil:add reverse :: nil:add -> nil:add shuffle :: nil:add -> nil:add concat :: leaf:cons -> leaf:cons -> leaf:cons leaf :: leaf:cons cons :: leaf:cons -> leaf:cons -> leaf:cons less_leaves :: leaf:cons -> leaf:cons -> false:true false :: false:true true :: false:true hole_0':s1_0 :: 0':s hole_nil:add2_0 :: nil:add hole_leaf:cons3_0 :: leaf:cons hole_false:true4_0 :: false:true gen_0':s5_0 :: Nat -> 0':s gen_nil:add6_0 :: Nat -> nil:add gen_leaf:cons7_0 :: Nat -> leaf:cons ---------------------------------------- (67) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: minus, quot, app, reverse, shuffle, concat, less_leaves They will be analysed ascendingly in the following order: minus < quot app < reverse reverse < shuffle concat < less_leaves ---------------------------------------- (68) Obligation: TRS: Rules: minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) quot(0', s(y)) -> 0' quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) app(nil, y) -> y app(add(x), y) -> add(app(x, y)) reverse(nil) -> nil reverse(add(x)) -> app(reverse(x), add(nil)) shuffle(nil) -> nil shuffle(add(x)) -> add(shuffle(reverse(x))) concat(leaf, y) -> y concat(cons(u, v), y) -> cons(u, concat(v, y)) less_leaves(x, leaf) -> false less_leaves(leaf, cons(w, z)) -> true less_leaves(cons(u, v), cons(w, z)) -> less_leaves(concat(u, v), concat(w, z)) Types: minus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s app :: nil:add -> nil:add -> nil:add nil :: nil:add add :: nil:add -> nil:add reverse :: nil:add -> nil:add shuffle :: nil:add -> nil:add concat :: leaf:cons -> leaf:cons -> leaf:cons leaf :: leaf:cons cons :: leaf:cons -> leaf:cons -> leaf:cons less_leaves :: leaf:cons -> leaf:cons -> false:true false :: false:true true :: false:true hole_0':s1_0 :: 0':s hole_nil:add2_0 :: nil:add hole_leaf:cons3_0 :: leaf:cons hole_false:true4_0 :: false:true gen_0':s5_0 :: Nat -> 0':s gen_nil:add6_0 :: Nat -> nil:add gen_leaf:cons7_0 :: Nat -> leaf:cons Generator Equations: gen_0':s5_0(0) <=> 0' gen_0':s5_0(+(x, 1)) <=> s(gen_0':s5_0(x)) gen_nil:add6_0(0) <=> nil gen_nil:add6_0(+(x, 1)) <=> add(gen_nil:add6_0(x)) gen_leaf:cons7_0(0) <=> leaf gen_leaf:cons7_0(+(x, 1)) <=> cons(leaf, gen_leaf:cons7_0(x)) The following defined symbols remain to be analysed: minus, quot, app, reverse, shuffle, concat, less_leaves They will be analysed ascendingly in the following order: minus < quot app < reverse reverse < shuffle concat < less_leaves ---------------------------------------- (69) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: minus(gen_0':s5_0(n9_0), gen_0':s5_0(n9_0)) -> gen_0':s5_0(0), rt in Omega(1 + n9_0) Induction Base: minus(gen_0':s5_0(0), gen_0':s5_0(0)) ->_R^Omega(1) gen_0':s5_0(0) Induction Step: minus(gen_0':s5_0(+(n9_0, 1)), gen_0':s5_0(+(n9_0, 1))) ->_R^Omega(1) minus(gen_0':s5_0(n9_0), gen_0':s5_0(n9_0)) ->_IH gen_0':s5_0(0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (70) Complex Obligation (BEST) ---------------------------------------- (71) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) quot(0', s(y)) -> 0' quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) app(nil, y) -> y app(add(x), y) -> add(app(x, y)) reverse(nil) -> nil reverse(add(x)) -> app(reverse(x), add(nil)) shuffle(nil) -> nil shuffle(add(x)) -> add(shuffle(reverse(x))) concat(leaf, y) -> y concat(cons(u, v), y) -> cons(u, concat(v, y)) less_leaves(x, leaf) -> false less_leaves(leaf, cons(w, z)) -> true less_leaves(cons(u, v), cons(w, z)) -> less_leaves(concat(u, v), concat(w, z)) Types: minus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s app :: nil:add -> nil:add -> nil:add nil :: nil:add add :: nil:add -> nil:add reverse :: nil:add -> nil:add shuffle :: nil:add -> nil:add concat :: leaf:cons -> leaf:cons -> leaf:cons leaf :: leaf:cons cons :: leaf:cons -> leaf:cons -> leaf:cons less_leaves :: leaf:cons -> leaf:cons -> false:true false :: false:true true :: false:true hole_0':s1_0 :: 0':s hole_nil:add2_0 :: nil:add hole_leaf:cons3_0 :: leaf:cons hole_false:true4_0 :: false:true gen_0':s5_0 :: Nat -> 0':s gen_nil:add6_0 :: Nat -> nil:add gen_leaf:cons7_0 :: Nat -> leaf:cons Generator Equations: gen_0':s5_0(0) <=> 0' gen_0':s5_0(+(x, 1)) <=> s(gen_0':s5_0(x)) gen_nil:add6_0(0) <=> nil gen_nil:add6_0(+(x, 1)) <=> add(gen_nil:add6_0(x)) gen_leaf:cons7_0(0) <=> leaf gen_leaf:cons7_0(+(x, 1)) <=> cons(leaf, gen_leaf:cons7_0(x)) The following defined symbols remain to be analysed: minus, quot, app, reverse, shuffle, concat, less_leaves They will be analysed ascendingly in the following order: minus < quot app < reverse reverse < shuffle concat < less_leaves ---------------------------------------- (72) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (73) BOUNDS(n^1, INF) ---------------------------------------- (74) Obligation: TRS: Rules: minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) quot(0', s(y)) -> 0' quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) app(nil, y) -> y app(add(x), y) -> add(app(x, y)) reverse(nil) -> nil reverse(add(x)) -> app(reverse(x), add(nil)) shuffle(nil) -> nil shuffle(add(x)) -> add(shuffle(reverse(x))) concat(leaf, y) -> y concat(cons(u, v), y) -> cons(u, concat(v, y)) less_leaves(x, leaf) -> false less_leaves(leaf, cons(w, z)) -> true less_leaves(cons(u, v), cons(w, z)) -> less_leaves(concat(u, v), concat(w, z)) Types: minus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s app :: nil:add -> nil:add -> nil:add nil :: nil:add add :: nil:add -> nil:add reverse :: nil:add -> nil:add shuffle :: nil:add -> nil:add concat :: leaf:cons -> leaf:cons -> leaf:cons leaf :: leaf:cons cons :: leaf:cons -> leaf:cons -> leaf:cons less_leaves :: leaf:cons -> leaf:cons -> false:true false :: false:true true :: false:true hole_0':s1_0 :: 0':s hole_nil:add2_0 :: nil:add hole_leaf:cons3_0 :: leaf:cons hole_false:true4_0 :: false:true gen_0':s5_0 :: Nat -> 0':s gen_nil:add6_0 :: Nat -> nil:add gen_leaf:cons7_0 :: Nat -> leaf:cons Lemmas: minus(gen_0':s5_0(n9_0), gen_0':s5_0(n9_0)) -> gen_0':s5_0(0), rt in Omega(1 + n9_0) Generator Equations: gen_0':s5_0(0) <=> 0' gen_0':s5_0(+(x, 1)) <=> s(gen_0':s5_0(x)) gen_nil:add6_0(0) <=> nil gen_nil:add6_0(+(x, 1)) <=> add(gen_nil:add6_0(x)) gen_leaf:cons7_0(0) <=> leaf gen_leaf:cons7_0(+(x, 1)) <=> cons(leaf, gen_leaf:cons7_0(x)) The following defined symbols remain to be analysed: quot, app, reverse, shuffle, concat, less_leaves They will be analysed ascendingly in the following order: app < reverse reverse < shuffle concat < less_leaves ---------------------------------------- (75) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: app(gen_nil:add6_0(n589_0), gen_nil:add6_0(b)) -> gen_nil:add6_0(+(n589_0, b)), rt in Omega(1 + n589_0) Induction Base: app(gen_nil:add6_0(0), gen_nil:add6_0(b)) ->_R^Omega(1) gen_nil:add6_0(b) Induction Step: app(gen_nil:add6_0(+(n589_0, 1)), gen_nil:add6_0(b)) ->_R^Omega(1) add(app(gen_nil:add6_0(n589_0), gen_nil:add6_0(b))) ->_IH add(gen_nil:add6_0(+(b, c590_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (76) Obligation: TRS: Rules: minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) quot(0', s(y)) -> 0' quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) app(nil, y) -> y app(add(x), y) -> add(app(x, y)) reverse(nil) -> nil reverse(add(x)) -> app(reverse(x), add(nil)) shuffle(nil) -> nil shuffle(add(x)) -> add(shuffle(reverse(x))) concat(leaf, y) -> y concat(cons(u, v), y) -> cons(u, concat(v, y)) less_leaves(x, leaf) -> false less_leaves(leaf, cons(w, z)) -> true less_leaves(cons(u, v), cons(w, z)) -> less_leaves(concat(u, v), concat(w, z)) Types: minus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s app :: nil:add -> nil:add -> nil:add nil :: nil:add add :: nil:add -> nil:add reverse :: nil:add -> nil:add shuffle :: nil:add -> nil:add concat :: leaf:cons -> leaf:cons -> leaf:cons leaf :: leaf:cons cons :: leaf:cons -> leaf:cons -> leaf:cons less_leaves :: leaf:cons -> leaf:cons -> false:true false :: false:true true :: false:true hole_0':s1_0 :: 0':s hole_nil:add2_0 :: nil:add hole_leaf:cons3_0 :: leaf:cons hole_false:true4_0 :: false:true gen_0':s5_0 :: Nat -> 0':s gen_nil:add6_0 :: Nat -> nil:add gen_leaf:cons7_0 :: Nat -> leaf:cons Lemmas: minus(gen_0':s5_0(n9_0), gen_0':s5_0(n9_0)) -> gen_0':s5_0(0), rt in Omega(1 + n9_0) app(gen_nil:add6_0(n589_0), gen_nil:add6_0(b)) -> gen_nil:add6_0(+(n589_0, b)), rt in Omega(1 + n589_0) Generator Equations: gen_0':s5_0(0) <=> 0' gen_0':s5_0(+(x, 1)) <=> s(gen_0':s5_0(x)) gen_nil:add6_0(0) <=> nil gen_nil:add6_0(+(x, 1)) <=> add(gen_nil:add6_0(x)) gen_leaf:cons7_0(0) <=> leaf gen_leaf:cons7_0(+(x, 1)) <=> cons(leaf, gen_leaf:cons7_0(x)) The following defined symbols remain to be analysed: reverse, shuffle, concat, less_leaves They will be analysed ascendingly in the following order: reverse < shuffle concat < less_leaves ---------------------------------------- (77) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: reverse(gen_nil:add6_0(n1508_0)) -> gen_nil:add6_0(n1508_0), rt in Omega(1 + n1508_0 + n1508_0^2) Induction Base: reverse(gen_nil:add6_0(0)) ->_R^Omega(1) nil Induction Step: reverse(gen_nil:add6_0(+(n1508_0, 1))) ->_R^Omega(1) app(reverse(gen_nil:add6_0(n1508_0)), add(nil)) ->_IH app(gen_nil:add6_0(c1509_0), add(nil)) ->_L^Omega(1 + n1508_0) gen_nil:add6_0(+(n1508_0, +(0, 1))) We have rt in Omega(n^2) and sz in O(n). Thus, we have irc_R in Omega(n^2). ---------------------------------------- (78) Complex Obligation (BEST) ---------------------------------------- (79) Obligation: Proved the lower bound n^2 for the following obligation: TRS: Rules: minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) quot(0', s(y)) -> 0' quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) app(nil, y) -> y app(add(x), y) -> add(app(x, y)) reverse(nil) -> nil reverse(add(x)) -> app(reverse(x), add(nil)) shuffle(nil) -> nil shuffle(add(x)) -> add(shuffle(reverse(x))) concat(leaf, y) -> y concat(cons(u, v), y) -> cons(u, concat(v, y)) less_leaves(x, leaf) -> false less_leaves(leaf, cons(w, z)) -> true less_leaves(cons(u, v), cons(w, z)) -> less_leaves(concat(u, v), concat(w, z)) Types: minus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s app :: nil:add -> nil:add -> nil:add nil :: nil:add add :: nil:add -> nil:add reverse :: nil:add -> nil:add shuffle :: nil:add -> nil:add concat :: leaf:cons -> leaf:cons -> leaf:cons leaf :: leaf:cons cons :: leaf:cons -> leaf:cons -> leaf:cons less_leaves :: leaf:cons -> leaf:cons -> false:true false :: false:true true :: false:true hole_0':s1_0 :: 0':s hole_nil:add2_0 :: nil:add hole_leaf:cons3_0 :: leaf:cons hole_false:true4_0 :: false:true gen_0':s5_0 :: Nat -> 0':s gen_nil:add6_0 :: Nat -> nil:add gen_leaf:cons7_0 :: Nat -> leaf:cons Lemmas: minus(gen_0':s5_0(n9_0), gen_0':s5_0(n9_0)) -> gen_0':s5_0(0), rt in Omega(1 + n9_0) app(gen_nil:add6_0(n589_0), gen_nil:add6_0(b)) -> gen_nil:add6_0(+(n589_0, b)), rt in Omega(1 + n589_0) Generator Equations: gen_0':s5_0(0) <=> 0' gen_0':s5_0(+(x, 1)) <=> s(gen_0':s5_0(x)) gen_nil:add6_0(0) <=> nil gen_nil:add6_0(+(x, 1)) <=> add(gen_nil:add6_0(x)) gen_leaf:cons7_0(0) <=> leaf gen_leaf:cons7_0(+(x, 1)) <=> cons(leaf, gen_leaf:cons7_0(x)) The following defined symbols remain to be analysed: reverse, shuffle, concat, less_leaves They will be analysed ascendingly in the following order: reverse < shuffle concat < less_leaves ---------------------------------------- (80) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (81) BOUNDS(n^2, INF) ---------------------------------------- (82) Obligation: TRS: Rules: minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) quot(0', s(y)) -> 0' quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) app(nil, y) -> y app(add(x), y) -> add(app(x, y)) reverse(nil) -> nil reverse(add(x)) -> app(reverse(x), add(nil)) shuffle(nil) -> nil shuffle(add(x)) -> add(shuffle(reverse(x))) concat(leaf, y) -> y concat(cons(u, v), y) -> cons(u, concat(v, y)) less_leaves(x, leaf) -> false less_leaves(leaf, cons(w, z)) -> true less_leaves(cons(u, v), cons(w, z)) -> less_leaves(concat(u, v), concat(w, z)) Types: minus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s app :: nil:add -> nil:add -> nil:add nil :: nil:add add :: nil:add -> nil:add reverse :: nil:add -> nil:add shuffle :: nil:add -> nil:add concat :: leaf:cons -> leaf:cons -> leaf:cons leaf :: leaf:cons cons :: leaf:cons -> leaf:cons -> leaf:cons less_leaves :: leaf:cons -> leaf:cons -> false:true false :: false:true true :: false:true hole_0':s1_0 :: 0':s hole_nil:add2_0 :: nil:add hole_leaf:cons3_0 :: leaf:cons hole_false:true4_0 :: false:true gen_0':s5_0 :: Nat -> 0':s gen_nil:add6_0 :: Nat -> nil:add gen_leaf:cons7_0 :: Nat -> leaf:cons Lemmas: minus(gen_0':s5_0(n9_0), gen_0':s5_0(n9_0)) -> gen_0':s5_0(0), rt in Omega(1 + n9_0) app(gen_nil:add6_0(n589_0), gen_nil:add6_0(b)) -> gen_nil:add6_0(+(n589_0, b)), rt in Omega(1 + n589_0) reverse(gen_nil:add6_0(n1508_0)) -> gen_nil:add6_0(n1508_0), rt in Omega(1 + n1508_0 + n1508_0^2) Generator Equations: gen_0':s5_0(0) <=> 0' gen_0':s5_0(+(x, 1)) <=> s(gen_0':s5_0(x)) gen_nil:add6_0(0) <=> nil gen_nil:add6_0(+(x, 1)) <=> add(gen_nil:add6_0(x)) gen_leaf:cons7_0(0) <=> leaf gen_leaf:cons7_0(+(x, 1)) <=> cons(leaf, gen_leaf:cons7_0(x)) The following defined symbols remain to be analysed: shuffle, concat, less_leaves They will be analysed ascendingly in the following order: concat < less_leaves ---------------------------------------- (83) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: shuffle(gen_nil:add6_0(n1776_0)) -> gen_nil:add6_0(n1776_0), rt in Omega(1 + n1776_0 + n1776_0^2 + n1776_0^3) Induction Base: shuffle(gen_nil:add6_0(0)) ->_R^Omega(1) nil Induction Step: shuffle(gen_nil:add6_0(+(n1776_0, 1))) ->_R^Omega(1) add(shuffle(reverse(gen_nil:add6_0(n1776_0)))) ->_L^Omega(1 + n1776_0 + n1776_0^2) add(shuffle(gen_nil:add6_0(n1776_0))) ->_IH add(gen_nil:add6_0(c1777_0)) We have rt in Omega(n^3) and sz in O(n). Thus, we have irc_R in Omega(n^3). ---------------------------------------- (84) Complex Obligation (BEST) ---------------------------------------- (85) Obligation: Proved the lower bound n^3 for the following obligation: TRS: Rules: minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) quot(0', s(y)) -> 0' quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) app(nil, y) -> y app(add(x), y) -> add(app(x, y)) reverse(nil) -> nil reverse(add(x)) -> app(reverse(x), add(nil)) shuffle(nil) -> nil shuffle(add(x)) -> add(shuffle(reverse(x))) concat(leaf, y) -> y concat(cons(u, v), y) -> cons(u, concat(v, y)) less_leaves(x, leaf) -> false less_leaves(leaf, cons(w, z)) -> true less_leaves(cons(u, v), cons(w, z)) -> less_leaves(concat(u, v), concat(w, z)) Types: minus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s app :: nil:add -> nil:add -> nil:add nil :: nil:add add :: nil:add -> nil:add reverse :: nil:add -> nil:add shuffle :: nil:add -> nil:add concat :: leaf:cons -> leaf:cons -> leaf:cons leaf :: leaf:cons cons :: leaf:cons -> leaf:cons -> leaf:cons less_leaves :: leaf:cons -> leaf:cons -> false:true false :: false:true true :: false:true hole_0':s1_0 :: 0':s hole_nil:add2_0 :: nil:add hole_leaf:cons3_0 :: leaf:cons hole_false:true4_0 :: false:true gen_0':s5_0 :: Nat -> 0':s gen_nil:add6_0 :: Nat -> nil:add gen_leaf:cons7_0 :: Nat -> leaf:cons Lemmas: minus(gen_0':s5_0(n9_0), gen_0':s5_0(n9_0)) -> gen_0':s5_0(0), rt in Omega(1 + n9_0) app(gen_nil:add6_0(n589_0), gen_nil:add6_0(b)) -> gen_nil:add6_0(+(n589_0, b)), rt in Omega(1 + n589_0) reverse(gen_nil:add6_0(n1508_0)) -> gen_nil:add6_0(n1508_0), rt in Omega(1 + n1508_0 + n1508_0^2) Generator Equations: gen_0':s5_0(0) <=> 0' gen_0':s5_0(+(x, 1)) <=> s(gen_0':s5_0(x)) gen_nil:add6_0(0) <=> nil gen_nil:add6_0(+(x, 1)) <=> add(gen_nil:add6_0(x)) gen_leaf:cons7_0(0) <=> leaf gen_leaf:cons7_0(+(x, 1)) <=> cons(leaf, gen_leaf:cons7_0(x)) The following defined symbols remain to be analysed: shuffle, concat, less_leaves They will be analysed ascendingly in the following order: concat < less_leaves ---------------------------------------- (86) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (87) BOUNDS(n^3, INF) ---------------------------------------- (88) Obligation: TRS: Rules: minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) quot(0', s(y)) -> 0' quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) app(nil, y) -> y app(add(x), y) -> add(app(x, y)) reverse(nil) -> nil reverse(add(x)) -> app(reverse(x), add(nil)) shuffle(nil) -> nil shuffle(add(x)) -> add(shuffle(reverse(x))) concat(leaf, y) -> y concat(cons(u, v), y) -> cons(u, concat(v, y)) less_leaves(x, leaf) -> false less_leaves(leaf, cons(w, z)) -> true less_leaves(cons(u, v), cons(w, z)) -> less_leaves(concat(u, v), concat(w, z)) Types: minus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s app :: nil:add -> nil:add -> nil:add nil :: nil:add add :: nil:add -> nil:add reverse :: nil:add -> nil:add shuffle :: nil:add -> nil:add concat :: leaf:cons -> leaf:cons -> leaf:cons leaf :: leaf:cons cons :: leaf:cons -> leaf:cons -> leaf:cons less_leaves :: leaf:cons -> leaf:cons -> false:true false :: false:true true :: false:true hole_0':s1_0 :: 0':s hole_nil:add2_0 :: nil:add hole_leaf:cons3_0 :: leaf:cons hole_false:true4_0 :: false:true gen_0':s5_0 :: Nat -> 0':s gen_nil:add6_0 :: Nat -> nil:add gen_leaf:cons7_0 :: Nat -> leaf:cons Lemmas: minus(gen_0':s5_0(n9_0), gen_0':s5_0(n9_0)) -> gen_0':s5_0(0), rt in Omega(1 + n9_0) app(gen_nil:add6_0(n589_0), gen_nil:add6_0(b)) -> gen_nil:add6_0(+(n589_0, b)), rt in Omega(1 + n589_0) reverse(gen_nil:add6_0(n1508_0)) -> gen_nil:add6_0(n1508_0), rt in Omega(1 + n1508_0 + n1508_0^2) shuffle(gen_nil:add6_0(n1776_0)) -> gen_nil:add6_0(n1776_0), rt in Omega(1 + n1776_0 + n1776_0^2 + n1776_0^3) Generator Equations: gen_0':s5_0(0) <=> 0' gen_0':s5_0(+(x, 1)) <=> s(gen_0':s5_0(x)) gen_nil:add6_0(0) <=> nil gen_nil:add6_0(+(x, 1)) <=> add(gen_nil:add6_0(x)) gen_leaf:cons7_0(0) <=> leaf gen_leaf:cons7_0(+(x, 1)) <=> cons(leaf, gen_leaf:cons7_0(x)) The following defined symbols remain to be analysed: concat, less_leaves They will be analysed ascendingly in the following order: concat < less_leaves ---------------------------------------- (89) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: concat(gen_leaf:cons7_0(n1977_0), gen_leaf:cons7_0(b)) -> gen_leaf:cons7_0(+(n1977_0, b)), rt in Omega(1 + n1977_0) Induction Base: concat(gen_leaf:cons7_0(0), gen_leaf:cons7_0(b)) ->_R^Omega(1) gen_leaf:cons7_0(b) Induction Step: concat(gen_leaf:cons7_0(+(n1977_0, 1)), gen_leaf:cons7_0(b)) ->_R^Omega(1) cons(leaf, concat(gen_leaf:cons7_0(n1977_0), gen_leaf:cons7_0(b))) ->_IH cons(leaf, gen_leaf:cons7_0(+(b, c1978_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (90) Obligation: TRS: Rules: minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) quot(0', s(y)) -> 0' quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) app(nil, y) -> y app(add(x), y) -> add(app(x, y)) reverse(nil) -> nil reverse(add(x)) -> app(reverse(x), add(nil)) shuffle(nil) -> nil shuffle(add(x)) -> add(shuffle(reverse(x))) concat(leaf, y) -> y concat(cons(u, v), y) -> cons(u, concat(v, y)) less_leaves(x, leaf) -> false less_leaves(leaf, cons(w, z)) -> true less_leaves(cons(u, v), cons(w, z)) -> less_leaves(concat(u, v), concat(w, z)) Types: minus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s app :: nil:add -> nil:add -> nil:add nil :: nil:add add :: nil:add -> nil:add reverse :: nil:add -> nil:add shuffle :: nil:add -> nil:add concat :: leaf:cons -> leaf:cons -> leaf:cons leaf :: leaf:cons cons :: leaf:cons -> leaf:cons -> leaf:cons less_leaves :: leaf:cons -> leaf:cons -> false:true false :: false:true true :: false:true hole_0':s1_0 :: 0':s hole_nil:add2_0 :: nil:add hole_leaf:cons3_0 :: leaf:cons hole_false:true4_0 :: false:true gen_0':s5_0 :: Nat -> 0':s gen_nil:add6_0 :: Nat -> nil:add gen_leaf:cons7_0 :: Nat -> leaf:cons Lemmas: minus(gen_0':s5_0(n9_0), gen_0':s5_0(n9_0)) -> gen_0':s5_0(0), rt in Omega(1 + n9_0) app(gen_nil:add6_0(n589_0), gen_nil:add6_0(b)) -> gen_nil:add6_0(+(n589_0, b)), rt in Omega(1 + n589_0) reverse(gen_nil:add6_0(n1508_0)) -> gen_nil:add6_0(n1508_0), rt in Omega(1 + n1508_0 + n1508_0^2) shuffle(gen_nil:add6_0(n1776_0)) -> gen_nil:add6_0(n1776_0), rt in Omega(1 + n1776_0 + n1776_0^2 + n1776_0^3) concat(gen_leaf:cons7_0(n1977_0), gen_leaf:cons7_0(b)) -> gen_leaf:cons7_0(+(n1977_0, b)), rt in Omega(1 + n1977_0) Generator Equations: gen_0':s5_0(0) <=> 0' gen_0':s5_0(+(x, 1)) <=> s(gen_0':s5_0(x)) gen_nil:add6_0(0) <=> nil gen_nil:add6_0(+(x, 1)) <=> add(gen_nil:add6_0(x)) gen_leaf:cons7_0(0) <=> leaf gen_leaf:cons7_0(+(x, 1)) <=> cons(leaf, gen_leaf:cons7_0(x)) The following defined symbols remain to be analysed: less_leaves ---------------------------------------- (91) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: less_leaves(gen_leaf:cons7_0(n3068_0), gen_leaf:cons7_0(n3068_0)) -> false, rt in Omega(1 + n3068_0) Induction Base: less_leaves(gen_leaf:cons7_0(0), gen_leaf:cons7_0(0)) ->_R^Omega(1) false Induction Step: less_leaves(gen_leaf:cons7_0(+(n3068_0, 1)), gen_leaf:cons7_0(+(n3068_0, 1))) ->_R^Omega(1) less_leaves(concat(leaf, gen_leaf:cons7_0(n3068_0)), concat(leaf, gen_leaf:cons7_0(n3068_0))) ->_L^Omega(1) less_leaves(gen_leaf:cons7_0(+(0, n3068_0)), concat(leaf, gen_leaf:cons7_0(n3068_0))) ->_L^Omega(1) less_leaves(gen_leaf:cons7_0(n3068_0), gen_leaf:cons7_0(+(0, n3068_0))) ->_IH false We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (92) BOUNDS(1, INF)