/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^2), O(n^2)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, n^2). (0) CpxTRS (1) NestedDefinedSymbolProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxTRS (5) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxWeightedTrs (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedTrs (9) CompletionProof [UPPER BOUND(ID), 0 ms] (10) CpxTypedWeightedCompleteTrs (11) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (12) CpxRNTS (13) CompleteCoflocoProof [FINISHED, 418 ms] (14) BOUNDS(1, n^2) (15) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxTRS (17) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (18) typed CpxTrs (19) OrderProof [LOWER BOUND(ID), 0 ms] (20) typed CpxTrs (21) RewriteLemmaProof [LOWER BOUND(ID), 265 ms] (22) BEST (23) proven lower bound (24) LowerBoundPropagationProof [FINISHED, 0 ms] (25) BOUNDS(n^1, INF) (26) typed CpxTrs (27) RewriteLemmaProof [LOWER BOUND(ID), 54 ms] (28) BEST (29) proven lower bound (30) LowerBoundPropagationProof [FINISHED, 0 ms] (31) BOUNDS(n^2, INF) (32) typed CpxTrs (33) RewriteLemmaProof [LOWER BOUND(ID), 61 ms] (34) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, n^2). The TRS R consists of the following rules: plus(x, 0) -> x plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(0, y) -> 0 times(s(0), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0, y) -> 0 div(x, y) -> quot(x, y, y) quot(0, s(y), z) -> 0 quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0, s(z)) -> s(div(x, s(z))) div(div(x, y), z) -> div(x, times(y, z)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) NestedDefinedSymbolProof (UPPER BOUND(ID)) The following defined symbols can occur below the 1th argument of plus: plus, times Hence, the left-hand sides of the following rules are not basic-reachable and can be removed: div(div(x, y), z) -> div(x, times(y, z)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: plus(x, 0) -> x plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(0, y) -> 0 times(s(0), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0, y) -> 0 div(x, y) -> quot(x, y, y) quot(0, s(y), z) -> 0 quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0, s(z)) -> s(div(x, s(z))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. The duplicating contexts are: times(s(x), []) div(x, []) The defined contexts are: plus(x0, []) As the TRS is an overlay system and the defined contexts and the duplicating contexts don't overlap, we have rc = irc. ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: plus(x, 0) -> x plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(0, y) -> 0 times(s(0), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0, y) -> 0 div(x, y) -> quot(x, y, y) quot(0, s(y), z) -> 0 quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0, s(z)) -> s(div(x, s(z))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: plus(x, 0) -> x [1] plus(0, y) -> y [1] plus(s(x), y) -> s(plus(x, y)) [1] times(0, y) -> 0 [1] times(s(0), y) -> y [1] times(s(x), y) -> plus(y, times(x, y)) [1] div(0, y) -> 0 [1] div(x, y) -> quot(x, y, y) [1] quot(0, s(y), z) -> 0 [1] quot(s(x), s(y), z) -> quot(x, y, z) [1] quot(x, 0, s(z)) -> s(div(x, s(z))) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: plus(x, 0) -> x [1] plus(0, y) -> y [1] plus(s(x), y) -> s(plus(x, y)) [1] times(0, y) -> 0 [1] times(s(0), y) -> y [1] times(s(x), y) -> plus(y, times(x, y)) [1] div(0, y) -> 0 [1] div(x, y) -> quot(x, y, y) [1] quot(0, s(y), z) -> 0 [1] quot(s(x), s(y), z) -> quot(x, y, z) [1] quot(x, 0, s(z)) -> s(div(x, s(z))) [1] The TRS has the following type information: plus :: 0:s -> 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s times :: 0:s -> 0:s -> 0:s div :: 0:s -> 0:s -> 0:s quot :: 0:s -> 0:s -> 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (9) CompletionProof (UPPER BOUND(ID)) The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: quot(v0, v1, v2) -> null_quot [0] plus(v0, v1) -> null_plus [0] times(v0, v1) -> null_times [0] And the following fresh constants: null_quot, null_plus, null_times ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: plus(x, 0) -> x [1] plus(0, y) -> y [1] plus(s(x), y) -> s(plus(x, y)) [1] times(0, y) -> 0 [1] times(s(0), y) -> y [1] times(s(x), y) -> plus(y, times(x, y)) [1] div(0, y) -> 0 [1] div(x, y) -> quot(x, y, y) [1] quot(0, s(y), z) -> 0 [1] quot(s(x), s(y), z) -> quot(x, y, z) [1] quot(x, 0, s(z)) -> s(div(x, s(z))) [1] quot(v0, v1, v2) -> null_quot [0] plus(v0, v1) -> null_plus [0] times(v0, v1) -> null_times [0] The TRS has the following type information: plus :: 0:s:null_quot:null_plus:null_times -> 0:s:null_quot:null_plus:null_times -> 0:s:null_quot:null_plus:null_times 0 :: 0:s:null_quot:null_plus:null_times s :: 0:s:null_quot:null_plus:null_times -> 0:s:null_quot:null_plus:null_times times :: 0:s:null_quot:null_plus:null_times -> 0:s:null_quot:null_plus:null_times -> 0:s:null_quot:null_plus:null_times div :: 0:s:null_quot:null_plus:null_times -> 0:s:null_quot:null_plus:null_times -> 0:s:null_quot:null_plus:null_times quot :: 0:s:null_quot:null_plus:null_times -> 0:s:null_quot:null_plus:null_times -> 0:s:null_quot:null_plus:null_times -> 0:s:null_quot:null_plus:null_times null_quot :: 0:s:null_quot:null_plus:null_times null_plus :: 0:s:null_quot:null_plus:null_times null_times :: 0:s:null_quot:null_plus:null_times Rewrite Strategy: INNERMOST ---------------------------------------- (11) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 null_quot => 0 null_plus => 0 null_times => 0 ---------------------------------------- (12) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(x, y, y) :|: z' = x, z'' = y, x >= 0, y >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' = y, y >= 0, z' = 0 plus(z', z'') -{ 1 }-> x :|: z'' = 0, z' = x, x >= 0 plus(z', z'') -{ 1 }-> y :|: z'' = y, y >= 0, z' = 0 plus(z', z'') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z'' = v1, z' = v0 plus(z', z'') -{ 1 }-> 1 + plus(x, y) :|: z' = 1 + x, z'' = y, x >= 0, y >= 0 quot(z', z'', z1) -{ 1 }-> quot(x, y, z) :|: z' = 1 + x, z1 = z, z >= 0, x >= 0, y >= 0, z'' = 1 + y quot(z', z'', z1) -{ 1 }-> 0 :|: z1 = z, z >= 0, y >= 0, z'' = 1 + y, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: v0 >= 0, z1 = v2, v1 >= 0, z'' = v1, v2 >= 0, z' = v0 quot(z', z'', z1) -{ 1 }-> 1 + div(x, 1 + z) :|: z'' = 0, z >= 0, z' = x, x >= 0, z1 = 1 + z times(z', z'') -{ 1 }-> y :|: z'' = y, y >= 0, z' = 1 + 0 times(z', z'') -{ 1 }-> plus(y, times(x, y)) :|: z' = 1 + x, z'' = y, x >= 0, y >= 0 times(z', z'') -{ 1 }-> 0 :|: z'' = y, y >= 0, z' = 0 times(z', z'') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z'' = v1, z' = v0 Only complete derivations are relevant for the runtime complexity. ---------------------------------------- (13) CompleteCoflocoProof (FINISHED) Transformed the RNTS (where only complete derivations are relevant) into cost relations for CoFloCo: eq(start(V, V1, V15),0,[plus(V, V1, Out)],[V >= 0,V1 >= 0]). eq(start(V, V1, V15),0,[times(V, V1, Out)],[V >= 0,V1 >= 0]). eq(start(V, V1, V15),0,[div(V, V1, Out)],[V >= 0,V1 >= 0]). eq(start(V, V1, V15),0,[quot(V, V1, V15, Out)],[V >= 0,V1 >= 0,V15 >= 0]). eq(plus(V, V1, Out),1,[],[Out = V2,V1 = 0,V = V2,V2 >= 0]). eq(plus(V, V1, Out),1,[],[Out = V3,V1 = V3,V3 >= 0,V = 0]). eq(plus(V, V1, Out),1,[plus(V4, V5, Ret1)],[Out = 1 + Ret1,V = 1 + V4,V1 = V5,V4 >= 0,V5 >= 0]). eq(times(V, V1, Out),1,[],[Out = 0,V1 = V6,V6 >= 0,V = 0]). eq(times(V, V1, Out),1,[],[Out = V7,V1 = V7,V7 >= 0,V = 1]). eq(times(V, V1, Out),1,[times(V9, V8, Ret11),plus(V8, Ret11, Ret)],[Out = Ret,V = 1 + V9,V1 = V8,V9 >= 0,V8 >= 0]). eq(div(V, V1, Out),1,[],[Out = 0,V1 = V10,V10 >= 0,V = 0]). eq(div(V, V1, Out),1,[quot(V11, V12, V12, Ret2)],[Out = Ret2,V = V11,V1 = V12,V11 >= 0,V12 >= 0]). eq(quot(V, V1, V15, Out),1,[],[Out = 0,V15 = V14,V14 >= 0,V13 >= 0,V1 = 1 + V13,V = 0]). eq(quot(V, V1, V15, Out),1,[quot(V16, V17, V18, Ret3)],[Out = Ret3,V = 1 + V16,V15 = V18,V18 >= 0,V16 >= 0,V17 >= 0,V1 = 1 + V17]). eq(quot(V, V1, V15, Out),1,[div(V20, 1 + V19, Ret12)],[Out = 1 + Ret12,V1 = 0,V19 >= 0,V = V20,V20 >= 0,V15 = 1 + V19]). eq(quot(V, V1, V15, Out),0,[],[Out = 0,V22 >= 0,V15 = V23,V21 >= 0,V1 = V21,V23 >= 0,V = V22]). eq(plus(V, V1, Out),0,[],[Out = 0,V25 >= 0,V24 >= 0,V1 = V24,V = V25]). eq(times(V, V1, Out),0,[],[Out = 0,V27 >= 0,V26 >= 0,V1 = V26,V = V27]). input_output_vars(plus(V,V1,Out),[V,V1],[Out]). input_output_vars(times(V,V1,Out),[V,V1],[Out]). input_output_vars(div(V,V1,Out),[V,V1],[Out]). input_output_vars(quot(V,V1,V15,Out),[V,V1,V15],[Out]). CoFloCo proof output: Preprocessing Cost Relations ===================================== #### Computed strongly connected components 0. recursive : [(div)/3,quot/4] 1. recursive : [plus/3] 2. recursive [non_tail] : [times/3] 3. non_recursive : [start/3] #### Obtained direct recursion through partial evaluation 0. SCC is partially evaluated into quot/4 1. SCC is partially evaluated into plus/3 2. SCC is partially evaluated into times/3 3. SCC is partially evaluated into start/3 Control-Flow Refinement of Cost Relations ===================================== ### Specialization of cost equations quot/4 * CE 8 is refined into CE [19] * CE 10 is refined into CE [20] * CE 7 is refined into CE [21] * CE 9 is refined into CE [22] * CE 6 is refined into CE [23] ### Cost equations --> "Loop" of quot/4 * CEs [22] --> Loop 13 * CEs [23] --> Loop 14 * CEs [19,20] --> Loop 15 * CEs [21] --> Loop 16 ### Ranking functions of CR quot(V,V1,V15,Out) #### Partial ranking functions of CR quot(V,V1,V15,Out) * Partial RF of phase [13,14]: - RF of loop [13:1]: V V1 depends on loops [14:1] - RF of loop [14:1]: -V1+1 depends on loops [13:1] ### Specialization of cost equations plus/3 * CE 14 is refined into CE [24] * CE 11 is refined into CE [25] * CE 12 is refined into CE [26] * CE 13 is refined into CE [27] ### Cost equations --> "Loop" of plus/3 * CEs [27] --> Loop 17 * CEs [24] --> Loop 18 * CEs [25] --> Loop 19 * CEs [26] --> Loop 20 ### Ranking functions of CR plus(V,V1,Out) * RF of phase [17]: [V] #### Partial ranking functions of CR plus(V,V1,Out) * Partial RF of phase [17]: - RF of loop [17:1]: V ### Specialization of cost equations times/3 * CE 16 is refined into CE [28] * CE 15 is refined into CE [29] * CE 18 is refined into CE [30] * CE 17 is refined into CE [31,32,33,34,35] ### Cost equations --> "Loop" of times/3 * CEs [35] --> Loop 21 * CEs [34] --> Loop 22 * CEs [32] --> Loop 23 * CEs [33] --> Loop 24 * CEs [31] --> Loop 25 * CEs [28] --> Loop 26 * CEs [29,30] --> Loop 27 ### Ranking functions of CR times(V,V1,Out) * RF of phase [21,22,23,24,25]: [V] #### Partial ranking functions of CR times(V,V1,Out) * Partial RF of phase [21,22,23,24,25]: - RF of loop [21:1,22:1,23:1,24:1,25:1]: V ### Specialization of cost equations start/3 * CE 1 is refined into CE [36,37] * CE 2 is refined into CE [38] * CE 3 is refined into CE [39,40,41,42,43] * CE 4 is refined into CE [44,45] * CE 5 is refined into CE [46,47] ### Cost equations --> "Loop" of start/3 * CEs [40] --> Loop 28 * CEs [36,37,38,39,41,42,43,44,45,46,47] --> Loop 29 ### Ranking functions of CR start(V,V1,V15) #### Partial ranking functions of CR start(V,V1,V15) Computing Bounds ===================================== #### Cost of chains of quot(V,V1,V15,Out): * Chain [[13,14],16]: 1*it(13)+2*it(14)+2 Such that:it(13) =< V aux(6) =< -V1 aux(5) =< -V1+1 it(14) =< it(13)+aux(6) it(14) =< it(13)+aux(5) with precondition: [V1>=0,V15>=0,Out>=1,V1+V15>=1,Out+V1>=2,V+1>=Out+V1] * Chain [[13,14],15]: 1*it(13)+2*it(14)+1 Such that:it(13) =< V aux(5) =< -V1+1 it(14) =< it(13)+aux(5) with precondition: [V>=0,V1>=0,V15>=0,Out>=0,V+V15>=1,Out+V>=1,V1+V15>=1,Out+V1>=1] * Chain [16]: 2 with precondition: [V=0,V1=0,Out=1,V15>=1] * Chain [15]: 1 with precondition: [Out=0,V>=0,V1>=0,V15>=0] #### Cost of chains of plus(V,V1,Out): * Chain [[17],20]: 1*it(17)+1 Such that:it(17) =< -V1+Out with precondition: [V+V1=Out,V>=1,V1>=0] * Chain [[17],19]: 1*it(17)+1 Such that:it(17) =< Out with precondition: [V1=0,V=Out,V>=1] * Chain [[17],18]: 1*it(17)+0 Such that:it(17) =< Out with precondition: [V1>=0,Out>=1,V>=Out] * Chain [20]: 1 with precondition: [V=0,V1=Out,V1>=0] * Chain [19]: 1 with precondition: [V1=0,V=Out,V>=0] * Chain [18]: 0 with precondition: [Out=0,V>=0,V1>=0] #### Cost of chains of times(V,V1,Out): * Chain [[21,22,23,24,25],27]: 8*it(21)+1*s(15)+2*s(16)+1 Such that:aux(13) =< V1 aux(18) =< V it(21) =< aux(18) aux(14) =< aux(13) s(15) =< it(21)*aux(13) s(16) =< it(21)*aux(14) with precondition: [V>=1,V1>=0,Out>=0] * Chain [[21,22,23,24,25],26]: 8*it(21)+1*s(15)+2*s(16)+1 Such that:aux(13) =< V1 aux(19) =< V it(21) =< aux(19) aux(14) =< aux(13) s(15) =< it(21)*aux(13) s(16) =< it(21)*aux(14) with precondition: [V>=2,V1>=0,Out>=0] * Chain [27]: 1 with precondition: [Out=0,V>=0,V1>=0] * Chain [26]: 1 with precondition: [V=1,V1=Out,V1>=0] #### Cost of chains of start(V,V1,V15): * Chain [29]: 22*s(33)+4*s(34)+4*s(35)+2*s(42)+4*s(43)+3 Such that:s(39) =< V1 aux(22) =< V aux(23) =< -V1 aux(24) =< -V1+1 s(33) =< aux(22) s(34) =< s(33)+aux(24) s(35) =< s(33)+aux(23) s(35) =< s(33)+aux(24) s(41) =< s(39) s(42) =< s(33)*s(39) s(43) =< s(33)*s(41) with precondition: [V>=0,V1>=0] * Chain [28]: 1*s(50)+1 Such that:s(50) =< V with precondition: [V1=0,V>=0] Closed-form bounds of start(V,V1,V15): ------------------------------------- * Chain [29] with precondition: [V>=0,V1>=0] - Upper bound: 30*V+3+6*V*V1+nat(-V1+1)*4 - Complexity: n^2 * Chain [28] with precondition: [V1=0,V>=0] - Upper bound: V+1 - Complexity: n ### Maximum cost of start(V,V1,V15): 29*V+2+6*V*V1+nat(-V1+1)*4+(V+1) Asymptotic class: n^2 * Total analysis performed in 335 ms. ---------------------------------------- (14) BOUNDS(1, n^2) ---------------------------------------- (15) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (16) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: plus(x, 0') -> x plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(0'), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0', y) -> 0' div(x, y) -> quot(x, y, y) quot(0', s(y), z) -> 0' quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0', s(z)) -> s(div(x, s(z))) div(div(x, y), z) -> div(x, times(y, z)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (17) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (18) Obligation: TRS: Rules: plus(x, 0') -> x plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(0'), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0', y) -> 0' div(x, y) -> quot(x, y, y) quot(0', s(y), z) -> 0' quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0', s(z)) -> s(div(x, s(z))) div(div(x, y), z) -> div(x, times(y, z)) Types: plus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s times :: 0':s -> 0':s -> 0':s div :: 0':s -> 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s ---------------------------------------- (19) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: plus, times, div, quot They will be analysed ascendingly in the following order: plus < times times < div div = quot ---------------------------------------- (20) Obligation: TRS: Rules: plus(x, 0') -> x plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(0'), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0', y) -> 0' div(x, y) -> quot(x, y, y) quot(0', s(y), z) -> 0' quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0', s(z)) -> s(div(x, s(z))) div(div(x, y), z) -> div(x, times(y, z)) Types: plus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s times :: 0':s -> 0':s -> 0':s div :: 0':s -> 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: plus, times, div, quot They will be analysed ascendingly in the following order: plus < times times < div div = quot ---------------------------------------- (21) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: plus(gen_0':s2_0(n4_0), gen_0':s2_0(b)) -> gen_0':s2_0(+(n4_0, b)), rt in Omega(1 + n4_0) Induction Base: plus(gen_0':s2_0(0), gen_0':s2_0(b)) ->_R^Omega(1) gen_0':s2_0(b) Induction Step: plus(gen_0':s2_0(+(n4_0, 1)), gen_0':s2_0(b)) ->_R^Omega(1) s(plus(gen_0':s2_0(n4_0), gen_0':s2_0(b))) ->_IH s(gen_0':s2_0(+(b, c5_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (22) Complex Obligation (BEST) ---------------------------------------- (23) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: plus(x, 0') -> x plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(0'), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0', y) -> 0' div(x, y) -> quot(x, y, y) quot(0', s(y), z) -> 0' quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0', s(z)) -> s(div(x, s(z))) div(div(x, y), z) -> div(x, times(y, z)) Types: plus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s times :: 0':s -> 0':s -> 0':s div :: 0':s -> 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: plus, times, div, quot They will be analysed ascendingly in the following order: plus < times times < div div = quot ---------------------------------------- (24) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (25) BOUNDS(n^1, INF) ---------------------------------------- (26) Obligation: TRS: Rules: plus(x, 0') -> x plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(0'), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0', y) -> 0' div(x, y) -> quot(x, y, y) quot(0', s(y), z) -> 0' quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0', s(z)) -> s(div(x, s(z))) div(div(x, y), z) -> div(x, times(y, z)) Types: plus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s times :: 0':s -> 0':s -> 0':s div :: 0':s -> 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Lemmas: plus(gen_0':s2_0(n4_0), gen_0':s2_0(b)) -> gen_0':s2_0(+(n4_0, b)), rt in Omega(1 + n4_0) Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: times, div, quot They will be analysed ascendingly in the following order: times < div div = quot ---------------------------------------- (27) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: times(gen_0':s2_0(n577_0), gen_0':s2_0(b)) -> gen_0':s2_0(*(n577_0, b)), rt in Omega(1 + b*n577_0 + n577_0) Induction Base: times(gen_0':s2_0(0), gen_0':s2_0(b)) ->_R^Omega(1) 0' Induction Step: times(gen_0':s2_0(+(n577_0, 1)), gen_0':s2_0(b)) ->_R^Omega(1) plus(gen_0':s2_0(b), times(gen_0':s2_0(n577_0), gen_0':s2_0(b))) ->_IH plus(gen_0':s2_0(b), gen_0':s2_0(*(c578_0, b))) ->_L^Omega(1 + b) gen_0':s2_0(+(b, *(n577_0, b))) We have rt in Omega(n^2) and sz in O(n). Thus, we have irc_R in Omega(n^2). ---------------------------------------- (28) Complex Obligation (BEST) ---------------------------------------- (29) Obligation: Proved the lower bound n^2 for the following obligation: TRS: Rules: plus(x, 0') -> x plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(0'), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0', y) -> 0' div(x, y) -> quot(x, y, y) quot(0', s(y), z) -> 0' quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0', s(z)) -> s(div(x, s(z))) div(div(x, y), z) -> div(x, times(y, z)) Types: plus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s times :: 0':s -> 0':s -> 0':s div :: 0':s -> 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Lemmas: plus(gen_0':s2_0(n4_0), gen_0':s2_0(b)) -> gen_0':s2_0(+(n4_0, b)), rt in Omega(1 + n4_0) Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: times, div, quot They will be analysed ascendingly in the following order: times < div div = quot ---------------------------------------- (30) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (31) BOUNDS(n^2, INF) ---------------------------------------- (32) Obligation: TRS: Rules: plus(x, 0') -> x plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(0'), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0', y) -> 0' div(x, y) -> quot(x, y, y) quot(0', s(y), z) -> 0' quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0', s(z)) -> s(div(x, s(z))) div(div(x, y), z) -> div(x, times(y, z)) Types: plus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s times :: 0':s -> 0':s -> 0':s div :: 0':s -> 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Lemmas: plus(gen_0':s2_0(n4_0), gen_0':s2_0(b)) -> gen_0':s2_0(+(n4_0, b)), rt in Omega(1 + n4_0) times(gen_0':s2_0(n577_0), gen_0':s2_0(b)) -> gen_0':s2_0(*(n577_0, b)), rt in Omega(1 + b*n577_0 + n577_0) Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: quot, div They will be analysed ascendingly in the following order: div = quot ---------------------------------------- (33) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: quot(gen_0':s2_0(n1370_0), gen_0':s2_0(+(1, n1370_0)), gen_0':s2_0(c)) -> gen_0':s2_0(0), rt in Omega(1 + n1370_0) Induction Base: quot(gen_0':s2_0(0), gen_0':s2_0(+(1, 0)), gen_0':s2_0(c)) ->_R^Omega(1) 0' Induction Step: quot(gen_0':s2_0(+(n1370_0, 1)), gen_0':s2_0(+(1, +(n1370_0, 1))), gen_0':s2_0(c)) ->_R^Omega(1) quot(gen_0':s2_0(n1370_0), gen_0':s2_0(+(1, n1370_0)), gen_0':s2_0(c)) ->_IH gen_0':s2_0(0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (34) Obligation: TRS: Rules: plus(x, 0') -> x plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(0'), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0', y) -> 0' div(x, y) -> quot(x, y, y) quot(0', s(y), z) -> 0' quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0', s(z)) -> s(div(x, s(z))) div(div(x, y), z) -> div(x, times(y, z)) Types: plus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s times :: 0':s -> 0':s -> 0':s div :: 0':s -> 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Lemmas: plus(gen_0':s2_0(n4_0), gen_0':s2_0(b)) -> gen_0':s2_0(+(n4_0, b)), rt in Omega(1 + n4_0) times(gen_0':s2_0(n577_0), gen_0':s2_0(b)) -> gen_0':s2_0(*(n577_0, b)), rt in Omega(1 + b*n577_0 + n577_0) quot(gen_0':s2_0(n1370_0), gen_0':s2_0(+(1, n1370_0)), gen_0':s2_0(c)) -> gen_0':s2_0(0), rt in Omega(1 + n1370_0) Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: div They will be analysed ascendingly in the following order: div = quot