/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 305 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 134 ms] (14) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(true, x, y) -> f(gt(x, y), trunc(x), s(y)) trunc(0) -> 0 trunc(s(0)) -> 0 trunc(s(s(x))) -> s(s(trunc(x))) gt(0, v) -> false gt(s(u), 0) -> true gt(s(u), s(v)) -> gt(u, v) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(true, x, y) -> f(gt(x, y), trunc(x), s(y)) trunc(0') -> 0' trunc(s(0')) -> 0' trunc(s(s(x))) -> s(s(trunc(x))) gt(0', v) -> false gt(s(u), 0') -> true gt(s(u), s(v)) -> gt(u, v) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: f(true, x, y) -> f(gt(x, y), trunc(x), s(y)) trunc(0') -> 0' trunc(s(0')) -> 0' trunc(s(s(x))) -> s(s(trunc(x))) gt(0', v) -> false gt(s(u), 0') -> true gt(s(u), s(v)) -> gt(u, v) Types: f :: true:false -> s:0' -> s:0' -> f true :: true:false gt :: s:0' -> s:0' -> true:false trunc :: s:0' -> s:0' s :: s:0' -> s:0' 0' :: s:0' false :: true:false hole_f1_0 :: f hole_true:false2_0 :: true:false hole_s:0'3_0 :: s:0' gen_s:0'4_0 :: Nat -> s:0' ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: f, gt, trunc They will be analysed ascendingly in the following order: gt < f trunc < f ---------------------------------------- (6) Obligation: TRS: Rules: f(true, x, y) -> f(gt(x, y), trunc(x), s(y)) trunc(0') -> 0' trunc(s(0')) -> 0' trunc(s(s(x))) -> s(s(trunc(x))) gt(0', v) -> false gt(s(u), 0') -> true gt(s(u), s(v)) -> gt(u, v) Types: f :: true:false -> s:0' -> s:0' -> f true :: true:false gt :: s:0' -> s:0' -> true:false trunc :: s:0' -> s:0' s :: s:0' -> s:0' 0' :: s:0' false :: true:false hole_f1_0 :: f hole_true:false2_0 :: true:false hole_s:0'3_0 :: s:0' gen_s:0'4_0 :: Nat -> s:0' Generator Equations: gen_s:0'4_0(0) <=> 0' gen_s:0'4_0(+(x, 1)) <=> s(gen_s:0'4_0(x)) The following defined symbols remain to be analysed: gt, f, trunc They will be analysed ascendingly in the following order: gt < f trunc < f ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: gt(gen_s:0'4_0(n6_0), gen_s:0'4_0(n6_0)) -> false, rt in Omega(1 + n6_0) Induction Base: gt(gen_s:0'4_0(0), gen_s:0'4_0(0)) ->_R^Omega(1) false Induction Step: gt(gen_s:0'4_0(+(n6_0, 1)), gen_s:0'4_0(+(n6_0, 1))) ->_R^Omega(1) gt(gen_s:0'4_0(n6_0), gen_s:0'4_0(n6_0)) ->_IH false We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: f(true, x, y) -> f(gt(x, y), trunc(x), s(y)) trunc(0') -> 0' trunc(s(0')) -> 0' trunc(s(s(x))) -> s(s(trunc(x))) gt(0', v) -> false gt(s(u), 0') -> true gt(s(u), s(v)) -> gt(u, v) Types: f :: true:false -> s:0' -> s:0' -> f true :: true:false gt :: s:0' -> s:0' -> true:false trunc :: s:0' -> s:0' s :: s:0' -> s:0' 0' :: s:0' false :: true:false hole_f1_0 :: f hole_true:false2_0 :: true:false hole_s:0'3_0 :: s:0' gen_s:0'4_0 :: Nat -> s:0' Generator Equations: gen_s:0'4_0(0) <=> 0' gen_s:0'4_0(+(x, 1)) <=> s(gen_s:0'4_0(x)) The following defined symbols remain to be analysed: gt, f, trunc They will be analysed ascendingly in the following order: gt < f trunc < f ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: f(true, x, y) -> f(gt(x, y), trunc(x), s(y)) trunc(0') -> 0' trunc(s(0')) -> 0' trunc(s(s(x))) -> s(s(trunc(x))) gt(0', v) -> false gt(s(u), 0') -> true gt(s(u), s(v)) -> gt(u, v) Types: f :: true:false -> s:0' -> s:0' -> f true :: true:false gt :: s:0' -> s:0' -> true:false trunc :: s:0' -> s:0' s :: s:0' -> s:0' 0' :: s:0' false :: true:false hole_f1_0 :: f hole_true:false2_0 :: true:false hole_s:0'3_0 :: s:0' gen_s:0'4_0 :: Nat -> s:0' Lemmas: gt(gen_s:0'4_0(n6_0), gen_s:0'4_0(n6_0)) -> false, rt in Omega(1 + n6_0) Generator Equations: gen_s:0'4_0(0) <=> 0' gen_s:0'4_0(+(x, 1)) <=> s(gen_s:0'4_0(x)) The following defined symbols remain to be analysed: trunc, f They will be analysed ascendingly in the following order: trunc < f ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: trunc(gen_s:0'4_0(*(2, n235_0))) -> gen_s:0'4_0(*(2, n235_0)), rt in Omega(1 + n235_0) Induction Base: trunc(gen_s:0'4_0(*(2, 0))) ->_R^Omega(1) 0' Induction Step: trunc(gen_s:0'4_0(*(2, +(n235_0, 1)))) ->_R^Omega(1) s(s(trunc(gen_s:0'4_0(*(2, n235_0))))) ->_IH s(s(gen_s:0'4_0(*(2, c236_0)))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: TRS: Rules: f(true, x, y) -> f(gt(x, y), trunc(x), s(y)) trunc(0') -> 0' trunc(s(0')) -> 0' trunc(s(s(x))) -> s(s(trunc(x))) gt(0', v) -> false gt(s(u), 0') -> true gt(s(u), s(v)) -> gt(u, v) Types: f :: true:false -> s:0' -> s:0' -> f true :: true:false gt :: s:0' -> s:0' -> true:false trunc :: s:0' -> s:0' s :: s:0' -> s:0' 0' :: s:0' false :: true:false hole_f1_0 :: f hole_true:false2_0 :: true:false hole_s:0'3_0 :: s:0' gen_s:0'4_0 :: Nat -> s:0' Lemmas: gt(gen_s:0'4_0(n6_0), gen_s:0'4_0(n6_0)) -> false, rt in Omega(1 + n6_0) trunc(gen_s:0'4_0(*(2, n235_0))) -> gen_s:0'4_0(*(2, n235_0)), rt in Omega(1 + n235_0) Generator Equations: gen_s:0'4_0(0) <=> 0' gen_s:0'4_0(+(x, 1)) <=> s(gen_s:0'4_0(x)) The following defined symbols remain to be analysed: f