/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^2)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). (0) CpxTRS (1) NestedDefinedSymbolProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxTRS (5) CpxTrsToCdtProof [UPPER BOUND(ID), 8 ms] (6) CdtProblem (7) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CdtProblem (9) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CdtProblem (11) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 30 ms] (12) CdtProblem (13) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 13 ms] (14) CdtProblem (15) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (16) BOUNDS(1, 1) (17) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (18) CpxTRS (19) SlicingProof [LOWER BOUND(ID), 0 ms] (20) CpxTRS (21) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (22) typed CpxTrs (23) OrderProof [LOWER BOUND(ID), 0 ms] (24) typed CpxTrs (25) RewriteLemmaProof [LOWER BOUND(ID), 658 ms] (26) proven lower bound (27) LowerBoundPropagationProof [FINISHED, 0 ms] (28) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: *(x, *(y, z)) -> *(otimes(x, y), z) *(1, y) -> y *(+(x, y), z) -> oplus(*(x, z), *(y, z)) *(x, oplus(y, z)) -> oplus(*(x, y), *(x, z)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) NestedDefinedSymbolProof (UPPER BOUND(ID)) The TRS does not nest defined symbols. Hence, the left-hand sides of the following rules are not basic-reachable and can be removed: *(x, *(y, z)) -> *(otimes(x, y), z) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: *(1, y) -> y *(+(x, y), z) -> oplus(*(x, z), *(y, z)) *(x, oplus(y, z)) -> oplus(*(x, y), *(x, z)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. As the TRS does not nest defined symbols, we have rc = irc. ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: *(1, y) -> y *(+(x, y), z) -> oplus(*(x, z), *(y, z)) *(x, oplus(y, z)) -> oplus(*(x, y), *(x, z)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (5) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: *(1, z0) -> z0 *(+(z0, z1), z2) -> oplus(*(z0, z2), *(z1, z2)) *(z0, oplus(z1, z2)) -> oplus(*(z0, z1), *(z0, z2)) Tuples: *'(1, z0) -> c *'(+(z0, z1), z2) -> c1(*'(z0, z2), *'(z1, z2)) *'(z0, oplus(z1, z2)) -> c2(*'(z0, z1), *'(z0, z2)) S tuples: *'(1, z0) -> c *'(+(z0, z1), z2) -> c1(*'(z0, z2), *'(z1, z2)) *'(z0, oplus(z1, z2)) -> c2(*'(z0, z1), *'(z0, z2)) K tuples:none Defined Rule Symbols: *_2 Defined Pair Symbols: *'_2 Compound Symbols: c, c1_2, c2_2 ---------------------------------------- (7) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing nodes: *'(1, z0) -> c ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: *(1, z0) -> z0 *(+(z0, z1), z2) -> oplus(*(z0, z2), *(z1, z2)) *(z0, oplus(z1, z2)) -> oplus(*(z0, z1), *(z0, z2)) Tuples: *'(+(z0, z1), z2) -> c1(*'(z0, z2), *'(z1, z2)) *'(z0, oplus(z1, z2)) -> c2(*'(z0, z1), *'(z0, z2)) S tuples: *'(+(z0, z1), z2) -> c1(*'(z0, z2), *'(z1, z2)) *'(z0, oplus(z1, z2)) -> c2(*'(z0, z1), *'(z0, z2)) K tuples:none Defined Rule Symbols: *_2 Defined Pair Symbols: *'_2 Compound Symbols: c1_2, c2_2 ---------------------------------------- (9) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: *(1, z0) -> z0 *(+(z0, z1), z2) -> oplus(*(z0, z2), *(z1, z2)) *(z0, oplus(z1, z2)) -> oplus(*(z0, z1), *(z0, z2)) ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: *'(+(z0, z1), z2) -> c1(*'(z0, z2), *'(z1, z2)) *'(z0, oplus(z1, z2)) -> c2(*'(z0, z1), *'(z0, z2)) S tuples: *'(+(z0, z1), z2) -> c1(*'(z0, z2), *'(z1, z2)) *'(z0, oplus(z1, z2)) -> c2(*'(z0, z1), *'(z0, z2)) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: *'_2 Compound Symbols: c1_2, c2_2 ---------------------------------------- (11) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. *'(z0, oplus(z1, z2)) -> c2(*'(z0, z1), *'(z0, z2)) We considered the (Usable) Rules:none And the Tuples: *'(+(z0, z1), z2) -> c1(*'(z0, z2), *'(z1, z2)) *'(z0, oplus(z1, z2)) -> c2(*'(z0, z1), *'(z0, z2)) The order we found is given by the following interpretation: Polynomial interpretation : POL(*'(x_1, x_2)) = x_2 + [2]x_1*x_2 POL(+(x_1, x_2)) = [2] + x_1 + x_2 POL(c1(x_1, x_2)) = x_1 + x_2 POL(c2(x_1, x_2)) = x_1 + x_2 POL(oplus(x_1, x_2)) = [2] + x_1 + x_2 ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: *'(+(z0, z1), z2) -> c1(*'(z0, z2), *'(z1, z2)) *'(z0, oplus(z1, z2)) -> c2(*'(z0, z1), *'(z0, z2)) S tuples: *'(+(z0, z1), z2) -> c1(*'(z0, z2), *'(z1, z2)) K tuples: *'(z0, oplus(z1, z2)) -> c2(*'(z0, z1), *'(z0, z2)) Defined Rule Symbols:none Defined Pair Symbols: *'_2 Compound Symbols: c1_2, c2_2 ---------------------------------------- (13) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. *'(+(z0, z1), z2) -> c1(*'(z0, z2), *'(z1, z2)) We considered the (Usable) Rules:none And the Tuples: *'(+(z0, z1), z2) -> c1(*'(z0, z2), *'(z1, z2)) *'(z0, oplus(z1, z2)) -> c2(*'(z0, z1), *'(z0, z2)) The order we found is given by the following interpretation: Polynomial interpretation : POL(*'(x_1, x_2)) = [1] + [2]x_1 + x_2 + [2]x_1*x_2 POL(+(x_1, x_2)) = [1] + x_1 + x_2 POL(c1(x_1, x_2)) = x_1 + x_2 POL(c2(x_1, x_2)) = x_1 + x_2 POL(oplus(x_1, x_2)) = [1] + x_1 + x_2 ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: *'(+(z0, z1), z2) -> c1(*'(z0, z2), *'(z1, z2)) *'(z0, oplus(z1, z2)) -> c2(*'(z0, z1), *'(z0, z2)) S tuples:none K tuples: *'(z0, oplus(z1, z2)) -> c2(*'(z0, z1), *'(z0, z2)) *'(+(z0, z1), z2) -> c1(*'(z0, z2), *'(z1, z2)) Defined Rule Symbols:none Defined Pair Symbols: *'_2 Compound Symbols: c1_2, c2_2 ---------------------------------------- (15) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (16) BOUNDS(1, 1) ---------------------------------------- (17) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (18) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: *'(x, *'(y, z)) -> *'(otimes(x, y), z) *'(1', y) -> y *'(+'(x, y), z) -> oplus(*'(x, z), *'(y, z)) *'(x, oplus(y, z)) -> oplus(*'(x, y), *'(x, z)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (19) SlicingProof (LOWER BOUND(ID)) Sliced the following arguments: otimes/0 otimes/1 ---------------------------------------- (20) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: *'(x, *'(y, z)) -> *'(otimes, z) *'(1', y) -> y *'(+'(x, y), z) -> oplus(*'(x, z), *'(y, z)) *'(x, oplus(y, z)) -> oplus(*'(x, y), *'(x, z)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (21) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (22) Obligation: TRS: Rules: *'(x, *'(y, z)) -> *'(otimes, z) *'(1', y) -> y *'(+'(x, y), z) -> oplus(*'(x, z), *'(y, z)) *'(x, oplus(y, z)) -> oplus(*'(x, y), *'(x, z)) Types: *' :: otimes:1':+' -> oplus -> oplus otimes :: otimes:1':+' 1' :: otimes:1':+' +' :: otimes:1':+' -> otimes:1':+' -> otimes:1':+' oplus :: oplus -> oplus -> oplus hole_oplus1_0 :: oplus hole_otimes:1':+'2_0 :: otimes:1':+' gen_oplus3_0 :: Nat -> oplus gen_otimes:1':+'4_0 :: Nat -> otimes:1':+' ---------------------------------------- (23) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: *' ---------------------------------------- (24) Obligation: TRS: Rules: *'(x, *'(y, z)) -> *'(otimes, z) *'(1', y) -> y *'(+'(x, y), z) -> oplus(*'(x, z), *'(y, z)) *'(x, oplus(y, z)) -> oplus(*'(x, y), *'(x, z)) Types: *' :: otimes:1':+' -> oplus -> oplus otimes :: otimes:1':+' 1' :: otimes:1':+' +' :: otimes:1':+' -> otimes:1':+' -> otimes:1':+' oplus :: oplus -> oplus -> oplus hole_oplus1_0 :: oplus hole_otimes:1':+'2_0 :: otimes:1':+' gen_oplus3_0 :: Nat -> oplus gen_otimes:1':+'4_0 :: Nat -> otimes:1':+' Generator Equations: gen_oplus3_0(0) <=> hole_oplus1_0 gen_oplus3_0(+(x, 1)) <=> oplus(hole_oplus1_0, gen_oplus3_0(x)) gen_otimes:1':+'4_0(0) <=> 1' gen_otimes:1':+'4_0(+(x, 1)) <=> +'(1', gen_otimes:1':+'4_0(x)) The following defined symbols remain to be analysed: *' ---------------------------------------- (25) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: *'(gen_otimes:1':+'4_0(0), gen_oplus3_0(n6_0)) -> *5_0, rt in Omega(n6_0) Induction Base: *'(gen_otimes:1':+'4_0(0), gen_oplus3_0(0)) Induction Step: *'(gen_otimes:1':+'4_0(0), gen_oplus3_0(+(n6_0, 1))) ->_R^Omega(1) oplus(*'(gen_otimes:1':+'4_0(0), hole_oplus1_0), *'(gen_otimes:1':+'4_0(0), gen_oplus3_0(n6_0))) ->_R^Omega(1) oplus(hole_oplus1_0, *'(gen_otimes:1':+'4_0(0), gen_oplus3_0(n6_0))) ->_IH oplus(hole_oplus1_0, *5_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (26) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: *'(x, *'(y, z)) -> *'(otimes, z) *'(1', y) -> y *'(+'(x, y), z) -> oplus(*'(x, z), *'(y, z)) *'(x, oplus(y, z)) -> oplus(*'(x, y), *'(x, z)) Types: *' :: otimes:1':+' -> oplus -> oplus otimes :: otimes:1':+' 1' :: otimes:1':+' +' :: otimes:1':+' -> otimes:1':+' -> otimes:1':+' oplus :: oplus -> oplus -> oplus hole_oplus1_0 :: oplus hole_otimes:1':+'2_0 :: otimes:1':+' gen_oplus3_0 :: Nat -> oplus gen_otimes:1':+'4_0 :: Nat -> otimes:1':+' Generator Equations: gen_oplus3_0(0) <=> hole_oplus1_0 gen_oplus3_0(+(x, 1)) <=> oplus(hole_oplus1_0, gen_oplus3_0(x)) gen_otimes:1':+'4_0(0) <=> 1' gen_otimes:1':+'4_0(+(x, 1)) <=> +'(1', gen_otimes:1':+'4_0(x)) The following defined symbols remain to be analysed: *' ---------------------------------------- (27) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (28) BOUNDS(n^1, INF)