/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^3), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^3, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 258 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 51 ms] (14) BEST (15) proven lower bound (16) LowerBoundPropagationProof [FINISHED, 0 ms] (17) BOUNDS(n^3, INF) (18) typed CpxTrs (19) RewriteLemmaProof [LOWER BOUND(ID), 85 ms] (20) typed CpxTrs (21) RewriteLemmaProof [LOWER BOUND(ID), 49 ms] (22) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^3, INF). The TRS R consists of the following rules: p(s(x)) -> x plus(x, 0) -> x plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) plus(s(x), y) -> s(plus(p(s(x)), y)) plus(x, s(y)) -> s(plus(x, p(s(y)))) times(0, y) -> 0 times(s(0), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0, y) -> 0 div(x, y) -> quot(x, y, y) quot(0, s(y), z) -> 0 quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0, s(z)) -> s(div(x, s(z))) div(div(x, y), z) -> div(x, times(y, z)) eq(0, 0) -> true eq(s(x), 0) -> false eq(0, s(y)) -> false eq(s(x), s(y)) -> eq(x, y) divides(y, x) -> eq(x, times(div(x, y), y)) prime(s(s(x))) -> pr(s(s(x)), s(x)) pr(x, s(0)) -> true pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y)) if(true, x, y) -> false if(false, x, y) -> pr(x, y) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^3, INF). The TRS R consists of the following rules: p(s(x)) -> x plus(x, 0') -> x plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) plus(s(x), y) -> s(plus(p(s(x)), y)) plus(x, s(y)) -> s(plus(x, p(s(y)))) times(0', y) -> 0' times(s(0'), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0', y) -> 0' div(x, y) -> quot(x, y, y) quot(0', s(y), z) -> 0' quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0', s(z)) -> s(div(x, s(z))) div(div(x, y), z) -> div(x, times(y, z)) eq(0', 0') -> true eq(s(x), 0') -> false eq(0', s(y)) -> false eq(s(x), s(y)) -> eq(x, y) divides(y, x) -> eq(x, times(div(x, y), y)) prime(s(s(x))) -> pr(s(s(x)), s(x)) pr(x, s(0')) -> true pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y)) if(true, x, y) -> false if(false, x, y) -> pr(x, y) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: p(s(x)) -> x plus(x, 0') -> x plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) plus(s(x), y) -> s(plus(p(s(x)), y)) plus(x, s(y)) -> s(plus(x, p(s(y)))) times(0', y) -> 0' times(s(0'), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0', y) -> 0' div(x, y) -> quot(x, y, y) quot(0', s(y), z) -> 0' quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0', s(z)) -> s(div(x, s(z))) div(div(x, y), z) -> div(x, times(y, z)) eq(0', 0') -> true eq(s(x), 0') -> false eq(0', s(y)) -> false eq(s(x), s(y)) -> eq(x, y) divides(y, x) -> eq(x, times(div(x, y), y)) prime(s(s(x))) -> pr(s(s(x)), s(x)) pr(x, s(0')) -> true pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y)) if(true, x, y) -> false if(false, x, y) -> pr(x, y) Types: p :: s:0' -> s:0' s :: s:0' -> s:0' plus :: s:0' -> s:0' -> s:0' 0' :: s:0' times :: s:0' -> s:0' -> s:0' div :: s:0' -> s:0' -> s:0' quot :: s:0' -> s:0' -> s:0' -> s:0' eq :: s:0' -> s:0' -> true:false true :: true:false false :: true:false divides :: s:0' -> s:0' -> true:false prime :: s:0' -> true:false pr :: s:0' -> s:0' -> true:false if :: true:false -> s:0' -> s:0' -> true:false hole_s:0'1_0 :: s:0' hole_true:false2_0 :: true:false gen_s:0'3_0 :: Nat -> s:0' ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: plus, times, div, quot, eq, pr They will be analysed ascendingly in the following order: plus < times times < div div = quot ---------------------------------------- (6) Obligation: TRS: Rules: p(s(x)) -> x plus(x, 0') -> x plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) plus(s(x), y) -> s(plus(p(s(x)), y)) plus(x, s(y)) -> s(plus(x, p(s(y)))) times(0', y) -> 0' times(s(0'), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0', y) -> 0' div(x, y) -> quot(x, y, y) quot(0', s(y), z) -> 0' quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0', s(z)) -> s(div(x, s(z))) div(div(x, y), z) -> div(x, times(y, z)) eq(0', 0') -> true eq(s(x), 0') -> false eq(0', s(y)) -> false eq(s(x), s(y)) -> eq(x, y) divides(y, x) -> eq(x, times(div(x, y), y)) prime(s(s(x))) -> pr(s(s(x)), s(x)) pr(x, s(0')) -> true pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y)) if(true, x, y) -> false if(false, x, y) -> pr(x, y) Types: p :: s:0' -> s:0' s :: s:0' -> s:0' plus :: s:0' -> s:0' -> s:0' 0' :: s:0' times :: s:0' -> s:0' -> s:0' div :: s:0' -> s:0' -> s:0' quot :: s:0' -> s:0' -> s:0' -> s:0' eq :: s:0' -> s:0' -> true:false true :: true:false false :: true:false divides :: s:0' -> s:0' -> true:false prime :: s:0' -> true:false pr :: s:0' -> s:0' -> true:false if :: true:false -> s:0' -> s:0' -> true:false hole_s:0'1_0 :: s:0' hole_true:false2_0 :: true:false gen_s:0'3_0 :: Nat -> s:0' Generator Equations: gen_s:0'3_0(0) <=> 0' gen_s:0'3_0(+(x, 1)) <=> s(gen_s:0'3_0(x)) The following defined symbols remain to be analysed: plus, times, div, quot, eq, pr They will be analysed ascendingly in the following order: plus < times times < div div = quot ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: plus(gen_s:0'3_0(a), gen_s:0'3_0(n5_0)) -> gen_s:0'3_0(+(n5_0, a)), rt in Omega(1 + n5_0) Induction Base: plus(gen_s:0'3_0(a), gen_s:0'3_0(0)) ->_R^Omega(1) gen_s:0'3_0(a) Induction Step: plus(gen_s:0'3_0(a), gen_s:0'3_0(+(n5_0, 1))) ->_R^Omega(1) s(plus(gen_s:0'3_0(a), p(s(gen_s:0'3_0(n5_0))))) ->_R^Omega(1) s(plus(gen_s:0'3_0(a), gen_s:0'3_0(n5_0))) ->_IH s(gen_s:0'3_0(+(a, c6_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: p(s(x)) -> x plus(x, 0') -> x plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) plus(s(x), y) -> s(plus(p(s(x)), y)) plus(x, s(y)) -> s(plus(x, p(s(y)))) times(0', y) -> 0' times(s(0'), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0', y) -> 0' div(x, y) -> quot(x, y, y) quot(0', s(y), z) -> 0' quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0', s(z)) -> s(div(x, s(z))) div(div(x, y), z) -> div(x, times(y, z)) eq(0', 0') -> true eq(s(x), 0') -> false eq(0', s(y)) -> false eq(s(x), s(y)) -> eq(x, y) divides(y, x) -> eq(x, times(div(x, y), y)) prime(s(s(x))) -> pr(s(s(x)), s(x)) pr(x, s(0')) -> true pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y)) if(true, x, y) -> false if(false, x, y) -> pr(x, y) Types: p :: s:0' -> s:0' s :: s:0' -> s:0' plus :: s:0' -> s:0' -> s:0' 0' :: s:0' times :: s:0' -> s:0' -> s:0' div :: s:0' -> s:0' -> s:0' quot :: s:0' -> s:0' -> s:0' -> s:0' eq :: s:0' -> s:0' -> true:false true :: true:false false :: true:false divides :: s:0' -> s:0' -> true:false prime :: s:0' -> true:false pr :: s:0' -> s:0' -> true:false if :: true:false -> s:0' -> s:0' -> true:false hole_s:0'1_0 :: s:0' hole_true:false2_0 :: true:false gen_s:0'3_0 :: Nat -> s:0' Generator Equations: gen_s:0'3_0(0) <=> 0' gen_s:0'3_0(+(x, 1)) <=> s(gen_s:0'3_0(x)) The following defined symbols remain to be analysed: plus, times, div, quot, eq, pr They will be analysed ascendingly in the following order: plus < times times < div div = quot ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: p(s(x)) -> x plus(x, 0') -> x plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) plus(s(x), y) -> s(plus(p(s(x)), y)) plus(x, s(y)) -> s(plus(x, p(s(y)))) times(0', y) -> 0' times(s(0'), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0', y) -> 0' div(x, y) -> quot(x, y, y) quot(0', s(y), z) -> 0' quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0', s(z)) -> s(div(x, s(z))) div(div(x, y), z) -> div(x, times(y, z)) eq(0', 0') -> true eq(s(x), 0') -> false eq(0', s(y)) -> false eq(s(x), s(y)) -> eq(x, y) divides(y, x) -> eq(x, times(div(x, y), y)) prime(s(s(x))) -> pr(s(s(x)), s(x)) pr(x, s(0')) -> true pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y)) if(true, x, y) -> false if(false, x, y) -> pr(x, y) Types: p :: s:0' -> s:0' s :: s:0' -> s:0' plus :: s:0' -> s:0' -> s:0' 0' :: s:0' times :: s:0' -> s:0' -> s:0' div :: s:0' -> s:0' -> s:0' quot :: s:0' -> s:0' -> s:0' -> s:0' eq :: s:0' -> s:0' -> true:false true :: true:false false :: true:false divides :: s:0' -> s:0' -> true:false prime :: s:0' -> true:false pr :: s:0' -> s:0' -> true:false if :: true:false -> s:0' -> s:0' -> true:false hole_s:0'1_0 :: s:0' hole_true:false2_0 :: true:false gen_s:0'3_0 :: Nat -> s:0' Lemmas: plus(gen_s:0'3_0(a), gen_s:0'3_0(n5_0)) -> gen_s:0'3_0(+(n5_0, a)), rt in Omega(1 + n5_0) Generator Equations: gen_s:0'3_0(0) <=> 0' gen_s:0'3_0(+(x, 1)) <=> s(gen_s:0'3_0(x)) The following defined symbols remain to be analysed: times, div, quot, eq, pr They will be analysed ascendingly in the following order: times < div div = quot ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: times(gen_s:0'3_0(n854_0), gen_s:0'3_0(b)) -> gen_s:0'3_0(*(n854_0, b)), rt in Omega(1 + b*n854_0^2 + n854_0) Induction Base: times(gen_s:0'3_0(0), gen_s:0'3_0(b)) ->_R^Omega(1) 0' Induction Step: times(gen_s:0'3_0(+(n854_0, 1)), gen_s:0'3_0(b)) ->_R^Omega(1) plus(gen_s:0'3_0(b), times(gen_s:0'3_0(n854_0), gen_s:0'3_0(b))) ->_IH plus(gen_s:0'3_0(b), gen_s:0'3_0(*(c855_0, b))) ->_L^Omega(1 + b*n854_0) gen_s:0'3_0(+(*(n854_0, b), b)) We have rt in Omega(n^3) and sz in O(n). Thus, we have irc_R in Omega(n^3). ---------------------------------------- (14) Complex Obligation (BEST) ---------------------------------------- (15) Obligation: Proved the lower bound n^3 for the following obligation: TRS: Rules: p(s(x)) -> x plus(x, 0') -> x plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) plus(s(x), y) -> s(plus(p(s(x)), y)) plus(x, s(y)) -> s(plus(x, p(s(y)))) times(0', y) -> 0' times(s(0'), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0', y) -> 0' div(x, y) -> quot(x, y, y) quot(0', s(y), z) -> 0' quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0', s(z)) -> s(div(x, s(z))) div(div(x, y), z) -> div(x, times(y, z)) eq(0', 0') -> true eq(s(x), 0') -> false eq(0', s(y)) -> false eq(s(x), s(y)) -> eq(x, y) divides(y, x) -> eq(x, times(div(x, y), y)) prime(s(s(x))) -> pr(s(s(x)), s(x)) pr(x, s(0')) -> true pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y)) if(true, x, y) -> false if(false, x, y) -> pr(x, y) Types: p :: s:0' -> s:0' s :: s:0' -> s:0' plus :: s:0' -> s:0' -> s:0' 0' :: s:0' times :: s:0' -> s:0' -> s:0' div :: s:0' -> s:0' -> s:0' quot :: s:0' -> s:0' -> s:0' -> s:0' eq :: s:0' -> s:0' -> true:false true :: true:false false :: true:false divides :: s:0' -> s:0' -> true:false prime :: s:0' -> true:false pr :: s:0' -> s:0' -> true:false if :: true:false -> s:0' -> s:0' -> true:false hole_s:0'1_0 :: s:0' hole_true:false2_0 :: true:false gen_s:0'3_0 :: Nat -> s:0' Lemmas: plus(gen_s:0'3_0(a), gen_s:0'3_0(n5_0)) -> gen_s:0'3_0(+(n5_0, a)), rt in Omega(1 + n5_0) Generator Equations: gen_s:0'3_0(0) <=> 0' gen_s:0'3_0(+(x, 1)) <=> s(gen_s:0'3_0(x)) The following defined symbols remain to be analysed: times, div, quot, eq, pr They will be analysed ascendingly in the following order: times < div div = quot ---------------------------------------- (16) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (17) BOUNDS(n^3, INF) ---------------------------------------- (18) Obligation: TRS: Rules: p(s(x)) -> x plus(x, 0') -> x plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) plus(s(x), y) -> s(plus(p(s(x)), y)) plus(x, s(y)) -> s(plus(x, p(s(y)))) times(0', y) -> 0' times(s(0'), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0', y) -> 0' div(x, y) -> quot(x, y, y) quot(0', s(y), z) -> 0' quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0', s(z)) -> s(div(x, s(z))) div(div(x, y), z) -> div(x, times(y, z)) eq(0', 0') -> true eq(s(x), 0') -> false eq(0', s(y)) -> false eq(s(x), s(y)) -> eq(x, y) divides(y, x) -> eq(x, times(div(x, y), y)) prime(s(s(x))) -> pr(s(s(x)), s(x)) pr(x, s(0')) -> true pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y)) if(true, x, y) -> false if(false, x, y) -> pr(x, y) Types: p :: s:0' -> s:0' s :: s:0' -> s:0' plus :: s:0' -> s:0' -> s:0' 0' :: s:0' times :: s:0' -> s:0' -> s:0' div :: s:0' -> s:0' -> s:0' quot :: s:0' -> s:0' -> s:0' -> s:0' eq :: s:0' -> s:0' -> true:false true :: true:false false :: true:false divides :: s:0' -> s:0' -> true:false prime :: s:0' -> true:false pr :: s:0' -> s:0' -> true:false if :: true:false -> s:0' -> s:0' -> true:false hole_s:0'1_0 :: s:0' hole_true:false2_0 :: true:false gen_s:0'3_0 :: Nat -> s:0' Lemmas: plus(gen_s:0'3_0(a), gen_s:0'3_0(n5_0)) -> gen_s:0'3_0(+(n5_0, a)), rt in Omega(1 + n5_0) times(gen_s:0'3_0(n854_0), gen_s:0'3_0(b)) -> gen_s:0'3_0(*(n854_0, b)), rt in Omega(1 + b*n854_0^2 + n854_0) Generator Equations: gen_s:0'3_0(0) <=> 0' gen_s:0'3_0(+(x, 1)) <=> s(gen_s:0'3_0(x)) The following defined symbols remain to be analysed: eq, div, quot, pr They will be analysed ascendingly in the following order: div = quot ---------------------------------------- (19) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: eq(gen_s:0'3_0(n1961_0), gen_s:0'3_0(n1961_0)) -> true, rt in Omega(1 + n1961_0) Induction Base: eq(gen_s:0'3_0(0), gen_s:0'3_0(0)) ->_R^Omega(1) true Induction Step: eq(gen_s:0'3_0(+(n1961_0, 1)), gen_s:0'3_0(+(n1961_0, 1))) ->_R^Omega(1) eq(gen_s:0'3_0(n1961_0), gen_s:0'3_0(n1961_0)) ->_IH true We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (20) Obligation: TRS: Rules: p(s(x)) -> x plus(x, 0') -> x plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) plus(s(x), y) -> s(plus(p(s(x)), y)) plus(x, s(y)) -> s(plus(x, p(s(y)))) times(0', y) -> 0' times(s(0'), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0', y) -> 0' div(x, y) -> quot(x, y, y) quot(0', s(y), z) -> 0' quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0', s(z)) -> s(div(x, s(z))) div(div(x, y), z) -> div(x, times(y, z)) eq(0', 0') -> true eq(s(x), 0') -> false eq(0', s(y)) -> false eq(s(x), s(y)) -> eq(x, y) divides(y, x) -> eq(x, times(div(x, y), y)) prime(s(s(x))) -> pr(s(s(x)), s(x)) pr(x, s(0')) -> true pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y)) if(true, x, y) -> false if(false, x, y) -> pr(x, y) Types: p :: s:0' -> s:0' s :: s:0' -> s:0' plus :: s:0' -> s:0' -> s:0' 0' :: s:0' times :: s:0' -> s:0' -> s:0' div :: s:0' -> s:0' -> s:0' quot :: s:0' -> s:0' -> s:0' -> s:0' eq :: s:0' -> s:0' -> true:false true :: true:false false :: true:false divides :: s:0' -> s:0' -> true:false prime :: s:0' -> true:false pr :: s:0' -> s:0' -> true:false if :: true:false -> s:0' -> s:0' -> true:false hole_s:0'1_0 :: s:0' hole_true:false2_0 :: true:false gen_s:0'3_0 :: Nat -> s:0' Lemmas: plus(gen_s:0'3_0(a), gen_s:0'3_0(n5_0)) -> gen_s:0'3_0(+(n5_0, a)), rt in Omega(1 + n5_0) times(gen_s:0'3_0(n854_0), gen_s:0'3_0(b)) -> gen_s:0'3_0(*(n854_0, b)), rt in Omega(1 + b*n854_0^2 + n854_0) eq(gen_s:0'3_0(n1961_0), gen_s:0'3_0(n1961_0)) -> true, rt in Omega(1 + n1961_0) Generator Equations: gen_s:0'3_0(0) <=> 0' gen_s:0'3_0(+(x, 1)) <=> s(gen_s:0'3_0(x)) The following defined symbols remain to be analysed: pr, div, quot They will be analysed ascendingly in the following order: div = quot ---------------------------------------- (21) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: quot(gen_s:0'3_0(n2634_0), gen_s:0'3_0(+(1, n2634_0)), gen_s:0'3_0(c)) -> gen_s:0'3_0(0), rt in Omega(1 + n2634_0) Induction Base: quot(gen_s:0'3_0(0), gen_s:0'3_0(+(1, 0)), gen_s:0'3_0(c)) ->_R^Omega(1) 0' Induction Step: quot(gen_s:0'3_0(+(n2634_0, 1)), gen_s:0'3_0(+(1, +(n2634_0, 1))), gen_s:0'3_0(c)) ->_R^Omega(1) quot(gen_s:0'3_0(n2634_0), gen_s:0'3_0(+(1, n2634_0)), gen_s:0'3_0(c)) ->_IH gen_s:0'3_0(0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (22) Obligation: TRS: Rules: p(s(x)) -> x plus(x, 0') -> x plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) plus(s(x), y) -> s(plus(p(s(x)), y)) plus(x, s(y)) -> s(plus(x, p(s(y)))) times(0', y) -> 0' times(s(0'), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0', y) -> 0' div(x, y) -> quot(x, y, y) quot(0', s(y), z) -> 0' quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0', s(z)) -> s(div(x, s(z))) div(div(x, y), z) -> div(x, times(y, z)) eq(0', 0') -> true eq(s(x), 0') -> false eq(0', s(y)) -> false eq(s(x), s(y)) -> eq(x, y) divides(y, x) -> eq(x, times(div(x, y), y)) prime(s(s(x))) -> pr(s(s(x)), s(x)) pr(x, s(0')) -> true pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y)) if(true, x, y) -> false if(false, x, y) -> pr(x, y) Types: p :: s:0' -> s:0' s :: s:0' -> s:0' plus :: s:0' -> s:0' -> s:0' 0' :: s:0' times :: s:0' -> s:0' -> s:0' div :: s:0' -> s:0' -> s:0' quot :: s:0' -> s:0' -> s:0' -> s:0' eq :: s:0' -> s:0' -> true:false true :: true:false false :: true:false divides :: s:0' -> s:0' -> true:false prime :: s:0' -> true:false pr :: s:0' -> s:0' -> true:false if :: true:false -> s:0' -> s:0' -> true:false hole_s:0'1_0 :: s:0' hole_true:false2_0 :: true:false gen_s:0'3_0 :: Nat -> s:0' Lemmas: plus(gen_s:0'3_0(a), gen_s:0'3_0(n5_0)) -> gen_s:0'3_0(+(n5_0, a)), rt in Omega(1 + n5_0) times(gen_s:0'3_0(n854_0), gen_s:0'3_0(b)) -> gen_s:0'3_0(*(n854_0, b)), rt in Omega(1 + b*n854_0^2 + n854_0) eq(gen_s:0'3_0(n1961_0), gen_s:0'3_0(n1961_0)) -> true, rt in Omega(1 + n1961_0) quot(gen_s:0'3_0(n2634_0), gen_s:0'3_0(+(1, n2634_0)), gen_s:0'3_0(c)) -> gen_s:0'3_0(0), rt in Omega(1 + n2634_0) Generator Equations: gen_s:0'3_0(0) <=> 0' gen_s:0'3_0(+(x, 1)) <=> s(gen_s:0'3_0(x)) The following defined symbols remain to be analysed: div They will be analysed ascendingly in the following order: div = quot