/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) NestedDefinedSymbolProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxTRS (5) CpxTrsToCdtProof [UPPER BOUND(ID), 8 ms] (6) CdtProblem (7) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CdtProblem (9) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CdtProblem (11) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 45 ms] (12) CdtProblem (13) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (14) BOUNDS(1, 1) (15) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxTRS (17) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (18) typed CpxTrs (19) OrderProof [LOWER BOUND(ID), 0 ms] (20) typed CpxTrs (21) RewriteLemmaProof [LOWER BOUND(ID), 548 ms] (22) BEST (23) proven lower bound (24) LowerBoundPropagationProof [FINISHED, 0 ms] (25) BOUNDS(n^1, INF) (26) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: h(e(x), y) -> h(d(x, y), s(y)) d(g(g(0, x), y), s(z)) -> g(e(x), d(g(g(0, x), y), z)) d(g(g(0, x), y), 0) -> e(y) d(g(0, x), y) -> e(x) d(g(x, y), z) -> g(d(x, z), e(y)) g(e(x), e(y)) -> e(g(x, y)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) NestedDefinedSymbolProof (UPPER BOUND(ID)) The following defined symbols can occur below the 0th argument of h: d The following defined symbols can occur below the 0th argument of d: d Hence, the left-hand sides of the following rules are not basic-reachable and can be removed: d(g(g(0, x), y), s(z)) -> g(e(x), d(g(g(0, x), y), z)) d(g(g(0, x), y), 0) -> e(y) d(g(0, x), y) -> e(x) d(g(x, y), z) -> g(d(x, z), e(y)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: h(e(x), y) -> h(d(x, y), s(y)) g(e(x), e(y)) -> e(g(x, y)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. As the TRS does not nest defined symbols, we have rc = irc. ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: h(e(x), y) -> h(d(x, y), s(y)) g(e(x), e(y)) -> e(g(x, y)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (5) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: h(e(z0), z1) -> h(d(z0, z1), s(z1)) g(e(z0), e(z1)) -> e(g(z0, z1)) Tuples: H(e(z0), z1) -> c(H(d(z0, z1), s(z1))) G(e(z0), e(z1)) -> c1(G(z0, z1)) S tuples: H(e(z0), z1) -> c(H(d(z0, z1), s(z1))) G(e(z0), e(z1)) -> c1(G(z0, z1)) K tuples:none Defined Rule Symbols: h_2, g_2 Defined Pair Symbols: H_2, G_2 Compound Symbols: c_1, c1_1 ---------------------------------------- (7) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing nodes: H(e(z0), z1) -> c(H(d(z0, z1), s(z1))) ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: h(e(z0), z1) -> h(d(z0, z1), s(z1)) g(e(z0), e(z1)) -> e(g(z0, z1)) Tuples: G(e(z0), e(z1)) -> c1(G(z0, z1)) S tuples: G(e(z0), e(z1)) -> c1(G(z0, z1)) K tuples:none Defined Rule Symbols: h_2, g_2 Defined Pair Symbols: G_2 Compound Symbols: c1_1 ---------------------------------------- (9) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: h(e(z0), z1) -> h(d(z0, z1), s(z1)) g(e(z0), e(z1)) -> e(g(z0, z1)) ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: G(e(z0), e(z1)) -> c1(G(z0, z1)) S tuples: G(e(z0), e(z1)) -> c1(G(z0, z1)) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: G_2 Compound Symbols: c1_1 ---------------------------------------- (11) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. G(e(z0), e(z1)) -> c1(G(z0, z1)) We considered the (Usable) Rules:none And the Tuples: G(e(z0), e(z1)) -> c1(G(z0, z1)) The order we found is given by the following interpretation: Polynomial interpretation : POL(G(x_1, x_2)) = x_2 POL(c1(x_1)) = x_1 POL(e(x_1)) = [1] + x_1 ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: G(e(z0), e(z1)) -> c1(G(z0, z1)) S tuples:none K tuples: G(e(z0), e(z1)) -> c1(G(z0, z1)) Defined Rule Symbols:none Defined Pair Symbols: G_2 Compound Symbols: c1_1 ---------------------------------------- (13) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (14) BOUNDS(1, 1) ---------------------------------------- (15) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (16) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: h(e(x), y) -> h(d(x, y), s(y)) d(g(g(0', x), y), s(z)) -> g(e(x), d(g(g(0', x), y), z)) d(g(g(0', x), y), 0') -> e(y) d(g(0', x), y) -> e(x) d(g(x, y), z) -> g(d(x, z), e(y)) g(e(x), e(y)) -> e(g(x, y)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (17) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (18) Obligation: TRS: Rules: h(e(x), y) -> h(d(x, y), s(y)) d(g(g(0', x), y), s(z)) -> g(e(x), d(g(g(0', x), y), z)) d(g(g(0', x), y), 0') -> e(y) d(g(0', x), y) -> e(x) d(g(x, y), z) -> g(d(x, z), e(y)) g(e(x), e(y)) -> e(g(x, y)) Types: h :: e:s:0' -> e:s:0' -> h e :: e:s:0' -> e:s:0' d :: e:s:0' -> e:s:0' -> e:s:0' s :: e:s:0' -> e:s:0' g :: e:s:0' -> e:s:0' -> e:s:0' 0' :: e:s:0' hole_h1_0 :: h hole_e:s:0'2_0 :: e:s:0' gen_e:s:0'3_0 :: Nat -> e:s:0' ---------------------------------------- (19) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: h, d, g They will be analysed ascendingly in the following order: d < h g < d ---------------------------------------- (20) Obligation: TRS: Rules: h(e(x), y) -> h(d(x, y), s(y)) d(g(g(0', x), y), s(z)) -> g(e(x), d(g(g(0', x), y), z)) d(g(g(0', x), y), 0') -> e(y) d(g(0', x), y) -> e(x) d(g(x, y), z) -> g(d(x, z), e(y)) g(e(x), e(y)) -> e(g(x, y)) Types: h :: e:s:0' -> e:s:0' -> h e :: e:s:0' -> e:s:0' d :: e:s:0' -> e:s:0' -> e:s:0' s :: e:s:0' -> e:s:0' g :: e:s:0' -> e:s:0' -> e:s:0' 0' :: e:s:0' hole_h1_0 :: h hole_e:s:0'2_0 :: e:s:0' gen_e:s:0'3_0 :: Nat -> e:s:0' Generator Equations: gen_e:s:0'3_0(0) <=> 0' gen_e:s:0'3_0(+(x, 1)) <=> e(gen_e:s:0'3_0(x)) The following defined symbols remain to be analysed: g, h, d They will be analysed ascendingly in the following order: d < h g < d ---------------------------------------- (21) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: g(gen_e:s:0'3_0(+(1, n5_0)), gen_e:s:0'3_0(+(1, n5_0))) -> *4_0, rt in Omega(n5_0) Induction Base: g(gen_e:s:0'3_0(+(1, 0)), gen_e:s:0'3_0(+(1, 0))) Induction Step: g(gen_e:s:0'3_0(+(1, +(n5_0, 1))), gen_e:s:0'3_0(+(1, +(n5_0, 1)))) ->_R^Omega(1) e(g(gen_e:s:0'3_0(+(1, n5_0)), gen_e:s:0'3_0(+(1, n5_0)))) ->_IH e(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (22) Complex Obligation (BEST) ---------------------------------------- (23) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: h(e(x), y) -> h(d(x, y), s(y)) d(g(g(0', x), y), s(z)) -> g(e(x), d(g(g(0', x), y), z)) d(g(g(0', x), y), 0') -> e(y) d(g(0', x), y) -> e(x) d(g(x, y), z) -> g(d(x, z), e(y)) g(e(x), e(y)) -> e(g(x, y)) Types: h :: e:s:0' -> e:s:0' -> h e :: e:s:0' -> e:s:0' d :: e:s:0' -> e:s:0' -> e:s:0' s :: e:s:0' -> e:s:0' g :: e:s:0' -> e:s:0' -> e:s:0' 0' :: e:s:0' hole_h1_0 :: h hole_e:s:0'2_0 :: e:s:0' gen_e:s:0'3_0 :: Nat -> e:s:0' Generator Equations: gen_e:s:0'3_0(0) <=> 0' gen_e:s:0'3_0(+(x, 1)) <=> e(gen_e:s:0'3_0(x)) The following defined symbols remain to be analysed: g, h, d They will be analysed ascendingly in the following order: d < h g < d ---------------------------------------- (24) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (25) BOUNDS(n^1, INF) ---------------------------------------- (26) Obligation: TRS: Rules: h(e(x), y) -> h(d(x, y), s(y)) d(g(g(0', x), y), s(z)) -> g(e(x), d(g(g(0', x), y), z)) d(g(g(0', x), y), 0') -> e(y) d(g(0', x), y) -> e(x) d(g(x, y), z) -> g(d(x, z), e(y)) g(e(x), e(y)) -> e(g(x, y)) Types: h :: e:s:0' -> e:s:0' -> h e :: e:s:0' -> e:s:0' d :: e:s:0' -> e:s:0' -> e:s:0' s :: e:s:0' -> e:s:0' g :: e:s:0' -> e:s:0' -> e:s:0' 0' :: e:s:0' hole_h1_0 :: h hole_e:s:0'2_0 :: e:s:0' gen_e:s:0'3_0 :: Nat -> e:s:0' Lemmas: g(gen_e:s:0'3_0(+(1, n5_0)), gen_e:s:0'3_0(+(1, n5_0))) -> *4_0, rt in Omega(n5_0) Generator Equations: gen_e:s:0'3_0(0) <=> 0' gen_e:s:0'3_0(+(x, 1)) <=> e(gen_e:s:0'3_0(x)) The following defined symbols remain to be analysed: d, h They will be analysed ascendingly in the following order: d < h