/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 284 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 10 ms] (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 15 ms] (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 86 ms] (18) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: times(x, y) -> sum(generate(x, y)) generate(x, y) -> gen(x, y, 0) gen(x, y, z) -> if(ge(z, x), x, y, z) if(true, x, y, z) -> nil if(false, x, y, z) -> cons(y, gen(x, y, s(z))) sum(xs) -> sum2(xs, 0) sum2(xs, y) -> ifsum(isNil(xs), isZero(head(xs)), xs, y) ifsum(true, b, xs, y) -> y ifsum(false, b, xs, y) -> ifsum2(b, xs, y) ifsum2(true, xs, y) -> sum2(tail(xs), y) ifsum2(false, xs, y) -> sum2(cons(p(head(xs)), tail(xs)), s(y)) isNil(nil) -> true isNil(cons(x, xs)) -> false tail(nil) -> nil tail(cons(x, xs)) -> xs head(cons(x, xs)) -> x head(nil) -> error isZero(0) -> true isZero(s(0)) -> false isZero(s(s(x))) -> isZero(s(x)) p(0) -> s(s(0)) p(s(0)) -> 0 p(s(s(x))) -> s(p(s(x))) ge(x, 0) -> true ge(0, s(y)) -> false ge(s(x), s(y)) -> ge(x, y) a -> c a -> d S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: times(x, y) -> sum(generate(x, y)) generate(x, y) -> gen(x, y, 0') gen(x, y, z) -> if(ge(z, x), x, y, z) if(true, x, y, z) -> nil if(false, x, y, z) -> cons(y, gen(x, y, s(z))) sum(xs) -> sum2(xs, 0') sum2(xs, y) -> ifsum(isNil(xs), isZero(head(xs)), xs, y) ifsum(true, b, xs, y) -> y ifsum(false, b, xs, y) -> ifsum2(b, xs, y) ifsum2(true, xs, y) -> sum2(tail(xs), y) ifsum2(false, xs, y) -> sum2(cons(p(head(xs)), tail(xs)), s(y)) isNil(nil) -> true isNil(cons(x, xs)) -> false tail(nil) -> nil tail(cons(x, xs)) -> xs head(cons(x, xs)) -> x head(nil) -> error isZero(0') -> true isZero(s(0')) -> false isZero(s(s(x))) -> isZero(s(x)) p(0') -> s(s(0')) p(s(0')) -> 0' p(s(s(x))) -> s(p(s(x))) ge(x, 0') -> true ge(0', s(y)) -> false ge(s(x), s(y)) -> ge(x, y) a -> c a -> d S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: times(x, y) -> sum(generate(x, y)) generate(x, y) -> gen(x, y, 0') gen(x, y, z) -> if(ge(z, x), x, y, z) if(true, x, y, z) -> nil if(false, x, y, z) -> cons(y, gen(x, y, s(z))) sum(xs) -> sum2(xs, 0') sum2(xs, y) -> ifsum(isNil(xs), isZero(head(xs)), xs, y) ifsum(true, b, xs, y) -> y ifsum(false, b, xs, y) -> ifsum2(b, xs, y) ifsum2(true, xs, y) -> sum2(tail(xs), y) ifsum2(false, xs, y) -> sum2(cons(p(head(xs)), tail(xs)), s(y)) isNil(nil) -> true isNil(cons(x, xs)) -> false tail(nil) -> nil tail(cons(x, xs)) -> xs head(cons(x, xs)) -> x head(nil) -> error isZero(0') -> true isZero(s(0')) -> false isZero(s(s(x))) -> isZero(s(x)) p(0') -> s(s(0')) p(s(0')) -> 0' p(s(s(x))) -> s(p(s(x))) ge(x, 0') -> true ge(0', s(y)) -> false ge(s(x), s(y)) -> ge(x, y) a -> c a -> d Types: times :: 0':s:error -> 0':s:error -> 0':s:error sum :: nil:cons -> 0':s:error generate :: 0':s:error -> 0':s:error -> nil:cons gen :: 0':s:error -> 0':s:error -> 0':s:error -> nil:cons 0' :: 0':s:error if :: true:false -> 0':s:error -> 0':s:error -> 0':s:error -> nil:cons ge :: 0':s:error -> 0':s:error -> true:false true :: true:false nil :: nil:cons false :: true:false cons :: 0':s:error -> nil:cons -> nil:cons s :: 0':s:error -> 0':s:error sum2 :: nil:cons -> 0':s:error -> 0':s:error ifsum :: true:false -> true:false -> nil:cons -> 0':s:error -> 0':s:error isNil :: nil:cons -> true:false isZero :: 0':s:error -> true:false head :: nil:cons -> 0':s:error ifsum2 :: true:false -> nil:cons -> 0':s:error -> 0':s:error tail :: nil:cons -> nil:cons p :: 0':s:error -> 0':s:error error :: 0':s:error a :: c:d c :: c:d d :: c:d hole_0':s:error1_0 :: 0':s:error hole_nil:cons2_0 :: nil:cons hole_true:false3_0 :: true:false hole_c:d4_0 :: c:d gen_0':s:error5_0 :: Nat -> 0':s:error gen_nil:cons6_0 :: Nat -> nil:cons ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: gen, ge, sum2, isZero, p They will be analysed ascendingly in the following order: ge < gen isZero < sum2 p < sum2 ---------------------------------------- (6) Obligation: TRS: Rules: times(x, y) -> sum(generate(x, y)) generate(x, y) -> gen(x, y, 0') gen(x, y, z) -> if(ge(z, x), x, y, z) if(true, x, y, z) -> nil if(false, x, y, z) -> cons(y, gen(x, y, s(z))) sum(xs) -> sum2(xs, 0') sum2(xs, y) -> ifsum(isNil(xs), isZero(head(xs)), xs, y) ifsum(true, b, xs, y) -> y ifsum(false, b, xs, y) -> ifsum2(b, xs, y) ifsum2(true, xs, y) -> sum2(tail(xs), y) ifsum2(false, xs, y) -> sum2(cons(p(head(xs)), tail(xs)), s(y)) isNil(nil) -> true isNil(cons(x, xs)) -> false tail(nil) -> nil tail(cons(x, xs)) -> xs head(cons(x, xs)) -> x head(nil) -> error isZero(0') -> true isZero(s(0')) -> false isZero(s(s(x))) -> isZero(s(x)) p(0') -> s(s(0')) p(s(0')) -> 0' p(s(s(x))) -> s(p(s(x))) ge(x, 0') -> true ge(0', s(y)) -> false ge(s(x), s(y)) -> ge(x, y) a -> c a -> d Types: times :: 0':s:error -> 0':s:error -> 0':s:error sum :: nil:cons -> 0':s:error generate :: 0':s:error -> 0':s:error -> nil:cons gen :: 0':s:error -> 0':s:error -> 0':s:error -> nil:cons 0' :: 0':s:error if :: true:false -> 0':s:error -> 0':s:error -> 0':s:error -> nil:cons ge :: 0':s:error -> 0':s:error -> true:false true :: true:false nil :: nil:cons false :: true:false cons :: 0':s:error -> nil:cons -> nil:cons s :: 0':s:error -> 0':s:error sum2 :: nil:cons -> 0':s:error -> 0':s:error ifsum :: true:false -> true:false -> nil:cons -> 0':s:error -> 0':s:error isNil :: nil:cons -> true:false isZero :: 0':s:error -> true:false head :: nil:cons -> 0':s:error ifsum2 :: true:false -> nil:cons -> 0':s:error -> 0':s:error tail :: nil:cons -> nil:cons p :: 0':s:error -> 0':s:error error :: 0':s:error a :: c:d c :: c:d d :: c:d hole_0':s:error1_0 :: 0':s:error hole_nil:cons2_0 :: nil:cons hole_true:false3_0 :: true:false hole_c:d4_0 :: c:d gen_0':s:error5_0 :: Nat -> 0':s:error gen_nil:cons6_0 :: Nat -> nil:cons Generator Equations: gen_0':s:error5_0(0) <=> 0' gen_0':s:error5_0(+(x, 1)) <=> s(gen_0':s:error5_0(x)) gen_nil:cons6_0(0) <=> nil gen_nil:cons6_0(+(x, 1)) <=> cons(0', gen_nil:cons6_0(x)) The following defined symbols remain to be analysed: ge, gen, sum2, isZero, p They will be analysed ascendingly in the following order: ge < gen isZero < sum2 p < sum2 ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: ge(gen_0':s:error5_0(n8_0), gen_0':s:error5_0(n8_0)) -> true, rt in Omega(1 + n8_0) Induction Base: ge(gen_0':s:error5_0(0), gen_0':s:error5_0(0)) ->_R^Omega(1) true Induction Step: ge(gen_0':s:error5_0(+(n8_0, 1)), gen_0':s:error5_0(+(n8_0, 1))) ->_R^Omega(1) ge(gen_0':s:error5_0(n8_0), gen_0':s:error5_0(n8_0)) ->_IH true We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: times(x, y) -> sum(generate(x, y)) generate(x, y) -> gen(x, y, 0') gen(x, y, z) -> if(ge(z, x), x, y, z) if(true, x, y, z) -> nil if(false, x, y, z) -> cons(y, gen(x, y, s(z))) sum(xs) -> sum2(xs, 0') sum2(xs, y) -> ifsum(isNil(xs), isZero(head(xs)), xs, y) ifsum(true, b, xs, y) -> y ifsum(false, b, xs, y) -> ifsum2(b, xs, y) ifsum2(true, xs, y) -> sum2(tail(xs), y) ifsum2(false, xs, y) -> sum2(cons(p(head(xs)), tail(xs)), s(y)) isNil(nil) -> true isNil(cons(x, xs)) -> false tail(nil) -> nil tail(cons(x, xs)) -> xs head(cons(x, xs)) -> x head(nil) -> error isZero(0') -> true isZero(s(0')) -> false isZero(s(s(x))) -> isZero(s(x)) p(0') -> s(s(0')) p(s(0')) -> 0' p(s(s(x))) -> s(p(s(x))) ge(x, 0') -> true ge(0', s(y)) -> false ge(s(x), s(y)) -> ge(x, y) a -> c a -> d Types: times :: 0':s:error -> 0':s:error -> 0':s:error sum :: nil:cons -> 0':s:error generate :: 0':s:error -> 0':s:error -> nil:cons gen :: 0':s:error -> 0':s:error -> 0':s:error -> nil:cons 0' :: 0':s:error if :: true:false -> 0':s:error -> 0':s:error -> 0':s:error -> nil:cons ge :: 0':s:error -> 0':s:error -> true:false true :: true:false nil :: nil:cons false :: true:false cons :: 0':s:error -> nil:cons -> nil:cons s :: 0':s:error -> 0':s:error sum2 :: nil:cons -> 0':s:error -> 0':s:error ifsum :: true:false -> true:false -> nil:cons -> 0':s:error -> 0':s:error isNil :: nil:cons -> true:false isZero :: 0':s:error -> true:false head :: nil:cons -> 0':s:error ifsum2 :: true:false -> nil:cons -> 0':s:error -> 0':s:error tail :: nil:cons -> nil:cons p :: 0':s:error -> 0':s:error error :: 0':s:error a :: c:d c :: c:d d :: c:d hole_0':s:error1_0 :: 0':s:error hole_nil:cons2_0 :: nil:cons hole_true:false3_0 :: true:false hole_c:d4_0 :: c:d gen_0':s:error5_0 :: Nat -> 0':s:error gen_nil:cons6_0 :: Nat -> nil:cons Generator Equations: gen_0':s:error5_0(0) <=> 0' gen_0':s:error5_0(+(x, 1)) <=> s(gen_0':s:error5_0(x)) gen_nil:cons6_0(0) <=> nil gen_nil:cons6_0(+(x, 1)) <=> cons(0', gen_nil:cons6_0(x)) The following defined symbols remain to be analysed: ge, gen, sum2, isZero, p They will be analysed ascendingly in the following order: ge < gen isZero < sum2 p < sum2 ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: times(x, y) -> sum(generate(x, y)) generate(x, y) -> gen(x, y, 0') gen(x, y, z) -> if(ge(z, x), x, y, z) if(true, x, y, z) -> nil if(false, x, y, z) -> cons(y, gen(x, y, s(z))) sum(xs) -> sum2(xs, 0') sum2(xs, y) -> ifsum(isNil(xs), isZero(head(xs)), xs, y) ifsum(true, b, xs, y) -> y ifsum(false, b, xs, y) -> ifsum2(b, xs, y) ifsum2(true, xs, y) -> sum2(tail(xs), y) ifsum2(false, xs, y) -> sum2(cons(p(head(xs)), tail(xs)), s(y)) isNil(nil) -> true isNil(cons(x, xs)) -> false tail(nil) -> nil tail(cons(x, xs)) -> xs head(cons(x, xs)) -> x head(nil) -> error isZero(0') -> true isZero(s(0')) -> false isZero(s(s(x))) -> isZero(s(x)) p(0') -> s(s(0')) p(s(0')) -> 0' p(s(s(x))) -> s(p(s(x))) ge(x, 0') -> true ge(0', s(y)) -> false ge(s(x), s(y)) -> ge(x, y) a -> c a -> d Types: times :: 0':s:error -> 0':s:error -> 0':s:error sum :: nil:cons -> 0':s:error generate :: 0':s:error -> 0':s:error -> nil:cons gen :: 0':s:error -> 0':s:error -> 0':s:error -> nil:cons 0' :: 0':s:error if :: true:false -> 0':s:error -> 0':s:error -> 0':s:error -> nil:cons ge :: 0':s:error -> 0':s:error -> true:false true :: true:false nil :: nil:cons false :: true:false cons :: 0':s:error -> nil:cons -> nil:cons s :: 0':s:error -> 0':s:error sum2 :: nil:cons -> 0':s:error -> 0':s:error ifsum :: true:false -> true:false -> nil:cons -> 0':s:error -> 0':s:error isNil :: nil:cons -> true:false isZero :: 0':s:error -> true:false head :: nil:cons -> 0':s:error ifsum2 :: true:false -> nil:cons -> 0':s:error -> 0':s:error tail :: nil:cons -> nil:cons p :: 0':s:error -> 0':s:error error :: 0':s:error a :: c:d c :: c:d d :: c:d hole_0':s:error1_0 :: 0':s:error hole_nil:cons2_0 :: nil:cons hole_true:false3_0 :: true:false hole_c:d4_0 :: c:d gen_0':s:error5_0 :: Nat -> 0':s:error gen_nil:cons6_0 :: Nat -> nil:cons Lemmas: ge(gen_0':s:error5_0(n8_0), gen_0':s:error5_0(n8_0)) -> true, rt in Omega(1 + n8_0) Generator Equations: gen_0':s:error5_0(0) <=> 0' gen_0':s:error5_0(+(x, 1)) <=> s(gen_0':s:error5_0(x)) gen_nil:cons6_0(0) <=> nil gen_nil:cons6_0(+(x, 1)) <=> cons(0', gen_nil:cons6_0(x)) The following defined symbols remain to be analysed: gen, sum2, isZero, p They will be analysed ascendingly in the following order: isZero < sum2 p < sum2 ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: isZero(gen_0':s:error5_0(+(1, n469_0))) -> false, rt in Omega(1 + n469_0) Induction Base: isZero(gen_0':s:error5_0(+(1, 0))) ->_R^Omega(1) false Induction Step: isZero(gen_0':s:error5_0(+(1, +(n469_0, 1)))) ->_R^Omega(1) isZero(s(gen_0':s:error5_0(n469_0))) ->_IH false We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: TRS: Rules: times(x, y) -> sum(generate(x, y)) generate(x, y) -> gen(x, y, 0') gen(x, y, z) -> if(ge(z, x), x, y, z) if(true, x, y, z) -> nil if(false, x, y, z) -> cons(y, gen(x, y, s(z))) sum(xs) -> sum2(xs, 0') sum2(xs, y) -> ifsum(isNil(xs), isZero(head(xs)), xs, y) ifsum(true, b, xs, y) -> y ifsum(false, b, xs, y) -> ifsum2(b, xs, y) ifsum2(true, xs, y) -> sum2(tail(xs), y) ifsum2(false, xs, y) -> sum2(cons(p(head(xs)), tail(xs)), s(y)) isNil(nil) -> true isNil(cons(x, xs)) -> false tail(nil) -> nil tail(cons(x, xs)) -> xs head(cons(x, xs)) -> x head(nil) -> error isZero(0') -> true isZero(s(0')) -> false isZero(s(s(x))) -> isZero(s(x)) p(0') -> s(s(0')) p(s(0')) -> 0' p(s(s(x))) -> s(p(s(x))) ge(x, 0') -> true ge(0', s(y)) -> false ge(s(x), s(y)) -> ge(x, y) a -> c a -> d Types: times :: 0':s:error -> 0':s:error -> 0':s:error sum :: nil:cons -> 0':s:error generate :: 0':s:error -> 0':s:error -> nil:cons gen :: 0':s:error -> 0':s:error -> 0':s:error -> nil:cons 0' :: 0':s:error if :: true:false -> 0':s:error -> 0':s:error -> 0':s:error -> nil:cons ge :: 0':s:error -> 0':s:error -> true:false true :: true:false nil :: nil:cons false :: true:false cons :: 0':s:error -> nil:cons -> nil:cons s :: 0':s:error -> 0':s:error sum2 :: nil:cons -> 0':s:error -> 0':s:error ifsum :: true:false -> true:false -> nil:cons -> 0':s:error -> 0':s:error isNil :: nil:cons -> true:false isZero :: 0':s:error -> true:false head :: nil:cons -> 0':s:error ifsum2 :: true:false -> nil:cons -> 0':s:error -> 0':s:error tail :: nil:cons -> nil:cons p :: 0':s:error -> 0':s:error error :: 0':s:error a :: c:d c :: c:d d :: c:d hole_0':s:error1_0 :: 0':s:error hole_nil:cons2_0 :: nil:cons hole_true:false3_0 :: true:false hole_c:d4_0 :: c:d gen_0':s:error5_0 :: Nat -> 0':s:error gen_nil:cons6_0 :: Nat -> nil:cons Lemmas: ge(gen_0':s:error5_0(n8_0), gen_0':s:error5_0(n8_0)) -> true, rt in Omega(1 + n8_0) isZero(gen_0':s:error5_0(+(1, n469_0))) -> false, rt in Omega(1 + n469_0) Generator Equations: gen_0':s:error5_0(0) <=> 0' gen_0':s:error5_0(+(x, 1)) <=> s(gen_0':s:error5_0(x)) gen_nil:cons6_0(0) <=> nil gen_nil:cons6_0(+(x, 1)) <=> cons(0', gen_nil:cons6_0(x)) The following defined symbols remain to be analysed: p, sum2 They will be analysed ascendingly in the following order: p < sum2 ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: p(gen_0':s:error5_0(+(1, n641_0))) -> gen_0':s:error5_0(n641_0), rt in Omega(1 + n641_0) Induction Base: p(gen_0':s:error5_0(+(1, 0))) ->_R^Omega(1) 0' Induction Step: p(gen_0':s:error5_0(+(1, +(n641_0, 1)))) ->_R^Omega(1) s(p(s(gen_0':s:error5_0(n641_0)))) ->_IH s(gen_0':s:error5_0(c642_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (16) Obligation: TRS: Rules: times(x, y) -> sum(generate(x, y)) generate(x, y) -> gen(x, y, 0') gen(x, y, z) -> if(ge(z, x), x, y, z) if(true, x, y, z) -> nil if(false, x, y, z) -> cons(y, gen(x, y, s(z))) sum(xs) -> sum2(xs, 0') sum2(xs, y) -> ifsum(isNil(xs), isZero(head(xs)), xs, y) ifsum(true, b, xs, y) -> y ifsum(false, b, xs, y) -> ifsum2(b, xs, y) ifsum2(true, xs, y) -> sum2(tail(xs), y) ifsum2(false, xs, y) -> sum2(cons(p(head(xs)), tail(xs)), s(y)) isNil(nil) -> true isNil(cons(x, xs)) -> false tail(nil) -> nil tail(cons(x, xs)) -> xs head(cons(x, xs)) -> x head(nil) -> error isZero(0') -> true isZero(s(0')) -> false isZero(s(s(x))) -> isZero(s(x)) p(0') -> s(s(0')) p(s(0')) -> 0' p(s(s(x))) -> s(p(s(x))) ge(x, 0') -> true ge(0', s(y)) -> false ge(s(x), s(y)) -> ge(x, y) a -> c a -> d Types: times :: 0':s:error -> 0':s:error -> 0':s:error sum :: nil:cons -> 0':s:error generate :: 0':s:error -> 0':s:error -> nil:cons gen :: 0':s:error -> 0':s:error -> 0':s:error -> nil:cons 0' :: 0':s:error if :: true:false -> 0':s:error -> 0':s:error -> 0':s:error -> nil:cons ge :: 0':s:error -> 0':s:error -> true:false true :: true:false nil :: nil:cons false :: true:false cons :: 0':s:error -> nil:cons -> nil:cons s :: 0':s:error -> 0':s:error sum2 :: nil:cons -> 0':s:error -> 0':s:error ifsum :: true:false -> true:false -> nil:cons -> 0':s:error -> 0':s:error isNil :: nil:cons -> true:false isZero :: 0':s:error -> true:false head :: nil:cons -> 0':s:error ifsum2 :: true:false -> nil:cons -> 0':s:error -> 0':s:error tail :: nil:cons -> nil:cons p :: 0':s:error -> 0':s:error error :: 0':s:error a :: c:d c :: c:d d :: c:d hole_0':s:error1_0 :: 0':s:error hole_nil:cons2_0 :: nil:cons hole_true:false3_0 :: true:false hole_c:d4_0 :: c:d gen_0':s:error5_0 :: Nat -> 0':s:error gen_nil:cons6_0 :: Nat -> nil:cons Lemmas: ge(gen_0':s:error5_0(n8_0), gen_0':s:error5_0(n8_0)) -> true, rt in Omega(1 + n8_0) isZero(gen_0':s:error5_0(+(1, n469_0))) -> false, rt in Omega(1 + n469_0) p(gen_0':s:error5_0(+(1, n641_0))) -> gen_0':s:error5_0(n641_0), rt in Omega(1 + n641_0) Generator Equations: gen_0':s:error5_0(0) <=> 0' gen_0':s:error5_0(+(x, 1)) <=> s(gen_0':s:error5_0(x)) gen_nil:cons6_0(0) <=> nil gen_nil:cons6_0(+(x, 1)) <=> cons(0', gen_nil:cons6_0(x)) The following defined symbols remain to be analysed: sum2 ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: sum2(gen_nil:cons6_0(n950_0), gen_0':s:error5_0(b)) -> gen_0':s:error5_0(b), rt in Omega(1 + n950_0) Induction Base: sum2(gen_nil:cons6_0(0), gen_0':s:error5_0(b)) ->_R^Omega(1) ifsum(isNil(gen_nil:cons6_0(0)), isZero(head(gen_nil:cons6_0(0))), gen_nil:cons6_0(0), gen_0':s:error5_0(b)) ->_R^Omega(1) ifsum(true, isZero(head(gen_nil:cons6_0(0))), gen_nil:cons6_0(0), gen_0':s:error5_0(b)) ->_R^Omega(1) ifsum(true, isZero(error), gen_nil:cons6_0(0), gen_0':s:error5_0(b)) ->_R^Omega(1) gen_0':s:error5_0(b) Induction Step: sum2(gen_nil:cons6_0(+(n950_0, 1)), gen_0':s:error5_0(b)) ->_R^Omega(1) ifsum(isNil(gen_nil:cons6_0(+(n950_0, 1))), isZero(head(gen_nil:cons6_0(+(n950_0, 1)))), gen_nil:cons6_0(+(n950_0, 1)), gen_0':s:error5_0(b)) ->_R^Omega(1) ifsum(false, isZero(head(gen_nil:cons6_0(+(1, n950_0)))), gen_nil:cons6_0(+(1, n950_0)), gen_0':s:error5_0(b)) ->_R^Omega(1) ifsum(false, isZero(0'), gen_nil:cons6_0(+(1, n950_0)), gen_0':s:error5_0(b)) ->_R^Omega(1) ifsum(false, true, gen_nil:cons6_0(+(1, n950_0)), gen_0':s:error5_0(b)) ->_R^Omega(1) ifsum2(true, gen_nil:cons6_0(+(1, n950_0)), gen_0':s:error5_0(b)) ->_R^Omega(1) sum2(tail(gen_nil:cons6_0(+(1, n950_0))), gen_0':s:error5_0(b)) ->_R^Omega(1) sum2(gen_nil:cons6_0(n950_0), gen_0':s:error5_0(b)) ->_IH gen_0':s:error5_0(b) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (18) BOUNDS(1, INF)