/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) NestedDefinedSymbolProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxTRS (5) CpxTrsToCdtProof [UPPER BOUND(ID), 2 ms] (6) CdtProblem (7) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CdtProblem (9) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 69 ms] (10) CdtProblem (11) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (12) BOUNDS(1, 1) (13) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxTRS (15) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (16) typed CpxTrs (17) OrderProof [LOWER BOUND(ID), 0 ms] (18) typed CpxTrs (19) RewriteLemmaProof [LOWER BOUND(ID), 638 ms] (20) proven lower bound (21) LowerBoundPropagationProof [FINISHED, 0 ms] (22) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: +(*(x, y), *(x, z)) -> *(x, +(y, z)) +(+(x, y), z) -> +(x, +(y, z)) +(*(x, y), +(*(x, z), u)) -> +(*(x, +(y, z)), u) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) NestedDefinedSymbolProof (UPPER BOUND(ID)) The TRS does not nest defined symbols. Hence, the left-hand sides of the following rules are not basic-reachable and can be removed: +(+(x, y), z) -> +(x, +(y, z)) +(*(x, y), +(*(x, z), u)) -> +(*(x, +(y, z)), u) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: +(*(x, y), *(x, z)) -> *(x, +(y, z)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. As the TRS does not nest defined symbols, we have rc = irc. ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: +(*(x, y), *(x, z)) -> *(x, +(y, z)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (5) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: +(*(z0, z1), *(z0, z2)) -> *(z0, +(z1, z2)) Tuples: +'(*(z0, z1), *(z0, z2)) -> c(+'(z1, z2)) S tuples: +'(*(z0, z1), *(z0, z2)) -> c(+'(z1, z2)) K tuples:none Defined Rule Symbols: +_2 Defined Pair Symbols: +'_2 Compound Symbols: c_1 ---------------------------------------- (7) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: +(*(z0, z1), *(z0, z2)) -> *(z0, +(z1, z2)) ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: +'(*(z0, z1), *(z0, z2)) -> c(+'(z1, z2)) S tuples: +'(*(z0, z1), *(z0, z2)) -> c(+'(z1, z2)) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: +'_2 Compound Symbols: c_1 ---------------------------------------- (9) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. +'(*(z0, z1), *(z0, z2)) -> c(+'(z1, z2)) We considered the (Usable) Rules:none And the Tuples: +'(*(z0, z1), *(z0, z2)) -> c(+'(z1, z2)) The order we found is given by the following interpretation: Polynomial interpretation : POL(*(x_1, x_2)) = [1] + x_2 POL(+'(x_1, x_2)) = x_2 POL(c(x_1)) = x_1 ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: +'(*(z0, z1), *(z0, z2)) -> c(+'(z1, z2)) S tuples:none K tuples: +'(*(z0, z1), *(z0, z2)) -> c(+'(z1, z2)) Defined Rule Symbols:none Defined Pair Symbols: +'_2 Compound Symbols: c_1 ---------------------------------------- (11) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (12) BOUNDS(1, 1) ---------------------------------------- (13) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (14) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: +'(*'(x, y), *'(x, z)) -> *'(x, +'(y, z)) +'(+'(x, y), z) -> +'(x, +'(y, z)) +'(*'(x, y), +'(*'(x, z), u)) -> +'(*'(x, +'(y, z)), u) S is empty. Rewrite Strategy: FULL ---------------------------------------- (15) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (16) Obligation: TRS: Rules: +'(*'(x, y), *'(x, z)) -> *'(x, +'(y, z)) +'(+'(x, y), z) -> +'(x, +'(y, z)) +'(*'(x, y), +'(*'(x, z), u)) -> +'(*'(x, +'(y, z)), u) Types: +' :: *':u -> *':u -> *':u *' :: a -> *':u -> *':u u :: *':u hole_*':u1_0 :: *':u hole_a2_0 :: a gen_*':u3_0 :: Nat -> *':u ---------------------------------------- (17) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: +' ---------------------------------------- (18) Obligation: TRS: Rules: +'(*'(x, y), *'(x, z)) -> *'(x, +'(y, z)) +'(+'(x, y), z) -> +'(x, +'(y, z)) +'(*'(x, y), +'(*'(x, z), u)) -> +'(*'(x, +'(y, z)), u) Types: +' :: *':u -> *':u -> *':u *' :: a -> *':u -> *':u u :: *':u hole_*':u1_0 :: *':u hole_a2_0 :: a gen_*':u3_0 :: Nat -> *':u Generator Equations: gen_*':u3_0(0) <=> u gen_*':u3_0(+(x, 1)) <=> *'(hole_a2_0, gen_*':u3_0(x)) The following defined symbols remain to be analysed: +' ---------------------------------------- (19) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: +'(gen_*':u3_0(+(1, n5_0)), gen_*':u3_0(+(1, n5_0))) -> *4_0, rt in Omega(n5_0) Induction Base: +'(gen_*':u3_0(+(1, 0)), gen_*':u3_0(+(1, 0))) Induction Step: +'(gen_*':u3_0(+(1, +(n5_0, 1))), gen_*':u3_0(+(1, +(n5_0, 1)))) ->_R^Omega(1) *'(hole_a2_0, +'(gen_*':u3_0(+(1, n5_0)), gen_*':u3_0(+(1, n5_0)))) ->_IH *'(hole_a2_0, *4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (20) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: +'(*'(x, y), *'(x, z)) -> *'(x, +'(y, z)) +'(+'(x, y), z) -> +'(x, +'(y, z)) +'(*'(x, y), +'(*'(x, z), u)) -> +'(*'(x, +'(y, z)), u) Types: +' :: *':u -> *':u -> *':u *' :: a -> *':u -> *':u u :: *':u hole_*':u1_0 :: *':u hole_a2_0 :: a gen_*':u3_0 :: Nat -> *':u Generator Equations: gen_*':u3_0(0) <=> u gen_*':u3_0(+(x, 1)) <=> *'(hole_a2_0, gen_*':u3_0(x)) The following defined symbols remain to be analysed: +' ---------------------------------------- (21) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (22) BOUNDS(n^1, INF)