/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 269 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: p(0) -> s(s(0)) p(s(x)) -> x p(p(s(x))) -> p(x) le(p(s(x)), x) -> le(x, x) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) minus(x, y) -> if(le(x, y), x, y) if(true, x, y) -> 0 if(false, x, y) -> s(minus(p(x), y)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: p(0') -> s(s(0')) p(s(x)) -> x p(p(s(x))) -> p(x) le(p(s(x)), x) -> le(x, x) le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) minus(x, y) -> if(le(x, y), x, y) if(true, x, y) -> 0' if(false, x, y) -> s(minus(p(x), y)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: p(0') -> s(s(0')) p(s(x)) -> x p(p(s(x))) -> p(x) le(p(s(x)), x) -> le(x, x) le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) minus(x, y) -> if(le(x, y), x, y) if(true, x, y) -> 0' if(false, x, y) -> s(minus(p(x), y)) Types: p :: 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s le :: 0':s -> 0':s -> true:false true :: true:false false :: true:false minus :: 0':s -> 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false gen_0':s3_0 :: Nat -> 0':s ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: p, le, minus They will be analysed ascendingly in the following order: p < minus le < minus ---------------------------------------- (6) Obligation: TRS: Rules: p(0') -> s(s(0')) p(s(x)) -> x p(p(s(x))) -> p(x) le(p(s(x)), x) -> le(x, x) le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) minus(x, y) -> if(le(x, y), x, y) if(true, x, y) -> 0' if(false, x, y) -> s(minus(p(x), y)) Types: p :: 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s le :: 0':s -> 0':s -> true:false true :: true:false false :: true:false minus :: 0':s -> 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false gen_0':s3_0 :: Nat -> 0':s Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: p, le, minus They will be analysed ascendingly in the following order: p < minus le < minus ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: le(gen_0':s3_0(n17_0), gen_0':s3_0(n17_0)) -> true, rt in Omega(1 + n17_0) Induction Base: le(gen_0':s3_0(0), gen_0':s3_0(0)) ->_R^Omega(1) true Induction Step: le(gen_0':s3_0(+(n17_0, 1)), gen_0':s3_0(+(n17_0, 1))) ->_R^Omega(1) le(gen_0':s3_0(n17_0), gen_0':s3_0(n17_0)) ->_IH true We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: p(0') -> s(s(0')) p(s(x)) -> x p(p(s(x))) -> p(x) le(p(s(x)), x) -> le(x, x) le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) minus(x, y) -> if(le(x, y), x, y) if(true, x, y) -> 0' if(false, x, y) -> s(minus(p(x), y)) Types: p :: 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s le :: 0':s -> 0':s -> true:false true :: true:false false :: true:false minus :: 0':s -> 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false gen_0':s3_0 :: Nat -> 0':s Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: le, minus They will be analysed ascendingly in the following order: le < minus ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: p(0') -> s(s(0')) p(s(x)) -> x p(p(s(x))) -> p(x) le(p(s(x)), x) -> le(x, x) le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) minus(x, y) -> if(le(x, y), x, y) if(true, x, y) -> 0' if(false, x, y) -> s(minus(p(x), y)) Types: p :: 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s le :: 0':s -> 0':s -> true:false true :: true:false false :: true:false minus :: 0':s -> 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false gen_0':s3_0 :: Nat -> 0':s Lemmas: le(gen_0':s3_0(n17_0), gen_0':s3_0(n17_0)) -> true, rt in Omega(1 + n17_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: minus