/export/starexec/sandbox/solver/bin/starexec_run_tct_rc /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1),?) * Step 1: Sum WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: int(x,x) -> cons(x,nil()) int(0(),s(y)) -> cons(0(),int(s(0()),s(y))) int(s(x),0()) -> nil() int(s(x),s(y)) -> intlist(int(x,y)) intlist(cons(x,y)) -> cons(s(x),intlist(y)) intlist(cons(x,nil())) -> cons(s(x),nil()) intlist(nil()) -> nil() - Signature: {int/2,intlist/1} / {0/0,cons/2,nil/0,s/1} - Obligation: runtime complexity wrt. defined symbols {int,intlist} and constructors {0,cons,nil,s} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: int(x,x) -> cons(x,nil()) int(0(),s(y)) -> cons(0(),int(s(0()),s(y))) int(s(x),0()) -> nil() int(s(x),s(y)) -> intlist(int(x,y)) intlist(cons(x,y)) -> cons(s(x),intlist(y)) intlist(cons(x,nil())) -> cons(s(x),nil()) intlist(nil()) -> nil() - Signature: {int/2,intlist/1} / {0/0,cons/2,nil/0,s/1} - Obligation: runtime complexity wrt. defined symbols {int,intlist} and constructors {0,cons,nil,s} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: int(x,y){x -> s(x),y -> s(y)} = int(s(x),s(y)) ->^+ intlist(int(x,y)) = C[int(x,y) = int(x,y){}] ** Step 1.b:1: ToInnermost MAYBE + Considered Problem: - Strict TRS: int(x,x) -> cons(x,nil()) int(0(),s(y)) -> cons(0(),int(s(0()),s(y))) int(s(x),0()) -> nil() int(s(x),s(y)) -> intlist(int(x,y)) intlist(cons(x,y)) -> cons(s(x),intlist(y)) intlist(cons(x,nil())) -> cons(s(x),nil()) intlist(nil()) -> nil() - Signature: {int/2,intlist/1} / {0/0,cons/2,nil/0,s/1} - Obligation: runtime complexity wrt. defined symbols {int,intlist} and constructors {0,cons,nil,s} + Applied Processor: ToInnermost + Details: switch to innermost, as the system is overlay and right linear and does not contain weak rules ** Step 1.b:2: DependencyPairs MAYBE + Considered Problem: - Strict TRS: int(x,x) -> cons(x,nil()) int(0(),s(y)) -> cons(0(),int(s(0()),s(y))) int(s(x),0()) -> nil() int(s(x),s(y)) -> intlist(int(x,y)) intlist(cons(x,y)) -> cons(s(x),intlist(y)) intlist(cons(x,nil())) -> cons(s(x),nil()) intlist(nil()) -> nil() - Signature: {int/2,intlist/1} / {0/0,cons/2,nil/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {int,intlist} and constructors {0,cons,nil,s} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs int#(x,x) -> c_1() int#(0(),s(y)) -> c_2(int#(s(0()),s(y))) int#(s(x),0()) -> c_3() int#(s(x),s(y)) -> c_4(intlist#(int(x,y)),int#(x,y)) intlist#(cons(x,y)) -> c_5(intlist#(y)) intlist#(cons(x,nil())) -> c_6() intlist#(nil()) -> c_7() Weak DPs and mark the set of starting terms. ** Step 1.b:3: PredecessorEstimation MAYBE + Considered Problem: - Strict DPs: int#(x,x) -> c_1() int#(0(),s(y)) -> c_2(int#(s(0()),s(y))) int#(s(x),0()) -> c_3() int#(s(x),s(y)) -> c_4(intlist#(int(x,y)),int#(x,y)) intlist#(cons(x,y)) -> c_5(intlist#(y)) intlist#(cons(x,nil())) -> c_6() intlist#(nil()) -> c_7() - Weak TRS: int(x,x) -> cons(x,nil()) int(0(),s(y)) -> cons(0(),int(s(0()),s(y))) int(s(x),0()) -> nil() int(s(x),s(y)) -> intlist(int(x,y)) intlist(cons(x,y)) -> cons(s(x),intlist(y)) intlist(cons(x,nil())) -> cons(s(x),nil()) intlist(nil()) -> nil() - Signature: {int/2,intlist/1,int#/2,intlist#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2,c_5/1,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {int#,intlist#} and constructors {0,cons,nil,s} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,3,6,7} by application of Pre({1,3,6,7}) = {2,4,5}. Here rules are labelled as follows: 1: int#(x,x) -> c_1() 2: int#(0(),s(y)) -> c_2(int#(s(0()),s(y))) 3: int#(s(x),0()) -> c_3() 4: int#(s(x),s(y)) -> c_4(intlist#(int(x,y)),int#(x,y)) 5: intlist#(cons(x,y)) -> c_5(intlist#(y)) 6: intlist#(cons(x,nil())) -> c_6() 7: intlist#(nil()) -> c_7() ** Step 1.b:4: RemoveWeakSuffixes MAYBE + Considered Problem: - Strict DPs: int#(0(),s(y)) -> c_2(int#(s(0()),s(y))) int#(s(x),s(y)) -> c_4(intlist#(int(x,y)),int#(x,y)) intlist#(cons(x,y)) -> c_5(intlist#(y)) - Weak DPs: int#(x,x) -> c_1() int#(s(x),0()) -> c_3() intlist#(cons(x,nil())) -> c_6() intlist#(nil()) -> c_7() - Weak TRS: int(x,x) -> cons(x,nil()) int(0(),s(y)) -> cons(0(),int(s(0()),s(y))) int(s(x),0()) -> nil() int(s(x),s(y)) -> intlist(int(x,y)) intlist(cons(x,y)) -> cons(s(x),intlist(y)) intlist(cons(x,nil())) -> cons(s(x),nil()) intlist(nil()) -> nil() - Signature: {int/2,intlist/1,int#/2,intlist#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2,c_5/1,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {int#,intlist#} and constructors {0,cons,nil,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:int#(0(),s(y)) -> c_2(int#(s(0()),s(y))) -->_1 int#(s(x),s(y)) -> c_4(intlist#(int(x,y)),int#(x,y)):2 -->_1 int#(x,x) -> c_1():4 2:S:int#(s(x),s(y)) -> c_4(intlist#(int(x,y)),int#(x,y)) -->_1 intlist#(cons(x,y)) -> c_5(intlist#(y)):3 -->_1 intlist#(nil()) -> c_7():7 -->_1 intlist#(cons(x,nil())) -> c_6():6 -->_2 int#(s(x),0()) -> c_3():5 -->_2 int#(x,x) -> c_1():4 -->_2 int#(s(x),s(y)) -> c_4(intlist#(int(x,y)),int#(x,y)):2 -->_2 int#(0(),s(y)) -> c_2(int#(s(0()),s(y))):1 3:S:intlist#(cons(x,y)) -> c_5(intlist#(y)) -->_1 intlist#(nil()) -> c_7():7 -->_1 intlist#(cons(x,nil())) -> c_6():6 -->_1 intlist#(cons(x,y)) -> c_5(intlist#(y)):3 4:W:int#(x,x) -> c_1() 5:W:int#(s(x),0()) -> c_3() 6:W:intlist#(cons(x,nil())) -> c_6() 7:W:intlist#(nil()) -> c_7() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 4: int#(x,x) -> c_1() 5: int#(s(x),0()) -> c_3() 6: intlist#(cons(x,nil())) -> c_6() 7: intlist#(nil()) -> c_7() ** Step 1.b:5: DecomposeDG MAYBE + Considered Problem: - Strict DPs: int#(0(),s(y)) -> c_2(int#(s(0()),s(y))) int#(s(x),s(y)) -> c_4(intlist#(int(x,y)),int#(x,y)) intlist#(cons(x,y)) -> c_5(intlist#(y)) - Weak TRS: int(x,x) -> cons(x,nil()) int(0(),s(y)) -> cons(0(),int(s(0()),s(y))) int(s(x),0()) -> nil() int(s(x),s(y)) -> intlist(int(x,y)) intlist(cons(x,y)) -> cons(s(x),intlist(y)) intlist(cons(x,nil())) -> cons(s(x),nil()) intlist(nil()) -> nil() - Signature: {int/2,intlist/1,int#/2,intlist#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2,c_5/1,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {int#,intlist#} and constructors {0,cons,nil,s} + Applied Processor: DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing} + Details: We decompose the input problem according to the dependency graph into the upper component int#(0(),s(y)) -> c_2(int#(s(0()),s(y))) int#(s(x),s(y)) -> c_4(intlist#(int(x,y)),int#(x,y)) and a lower component intlist#(cons(x,y)) -> c_5(intlist#(y)) Further, following extension rules are added to the lower component. int#(0(),s(y)) -> int#(s(0()),s(y)) int#(s(x),s(y)) -> int#(x,y) int#(s(x),s(y)) -> intlist#(int(x,y)) *** Step 1.b:5.a:1: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: int#(0(),s(y)) -> c_2(int#(s(0()),s(y))) int#(s(x),s(y)) -> c_4(intlist#(int(x,y)),int#(x,y)) - Weak TRS: int(x,x) -> cons(x,nil()) int(0(),s(y)) -> cons(0(),int(s(0()),s(y))) int(s(x),0()) -> nil() int(s(x),s(y)) -> intlist(int(x,y)) intlist(cons(x,y)) -> cons(s(x),intlist(y)) intlist(cons(x,nil())) -> cons(s(x),nil()) intlist(nil()) -> nil() - Signature: {int/2,intlist/1,int#/2,intlist#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2,c_5/1,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {int#,intlist#} and constructors {0,cons,nil,s} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 2: int#(s(x),s(y)) -> c_4(intlist#(int(x,y)),int#(x,y)) Consider the set of all dependency pairs 1: int#(0(),s(y)) -> c_2(int#(s(0()),s(y))) 2: int#(s(x),s(y)) -> c_4(intlist#(int(x,y)),int#(x,y)) Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^1)) SPACE(?,?)on application of the dependency pairs {2} These cover all (indirect) predecessors of dependency pairs {1,2} their number of applications is equally bounded. The dependency pairs are shifted into the weak component. **** Step 1.b:5.a:1.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: int#(0(),s(y)) -> c_2(int#(s(0()),s(y))) int#(s(x),s(y)) -> c_4(intlist#(int(x,y)),int#(x,y)) - Weak TRS: int(x,x) -> cons(x,nil()) int(0(),s(y)) -> cons(0(),int(s(0()),s(y))) int(s(x),0()) -> nil() int(s(x),s(y)) -> intlist(int(x,y)) intlist(cons(x,y)) -> cons(s(x),intlist(y)) intlist(cons(x,nil())) -> cons(s(x),nil()) intlist(nil()) -> nil() - Signature: {int/2,intlist/1,int#/2,intlist#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2,c_5/1,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {int#,intlist#} and constructors {0,cons,nil,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_2) = {1}, uargs(c_4) = {1,2} Following symbols are considered usable: {int#,intlist#} TcT has computed the following interpretation: p(0) = [4] p(cons) = [1] x2 + [10] p(int) = [4] p(intlist) = [2] x1 + [0] p(nil) = [2] p(s) = [1] x1 + [8] p(int#) = [2] x2 + [0] p(intlist#) = [1] p(c_1) = [8] p(c_2) = [1] x1 + [0] p(c_3) = [0] p(c_4) = [4] x1 + [1] x2 + [4] p(c_5) = [1] p(c_6) = [0] p(c_7) = [0] Following rules are strictly oriented: int#(s(x),s(y)) = [2] y + [16] > [2] y + [8] = c_4(intlist#(int(x,y)),int#(x,y)) Following rules are (at-least) weakly oriented: int#(0(),s(y)) = [2] y + [16] >= [2] y + [16] = c_2(int#(s(0()),s(y))) **** Step 1.b:5.a:1.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: int#(0(),s(y)) -> c_2(int#(s(0()),s(y))) - Weak DPs: int#(s(x),s(y)) -> c_4(intlist#(int(x,y)),int#(x,y)) - Weak TRS: int(x,x) -> cons(x,nil()) int(0(),s(y)) -> cons(0(),int(s(0()),s(y))) int(s(x),0()) -> nil() int(s(x),s(y)) -> intlist(int(x,y)) intlist(cons(x,y)) -> cons(s(x),intlist(y)) intlist(cons(x,nil())) -> cons(s(x),nil()) intlist(nil()) -> nil() - Signature: {int/2,intlist/1,int#/2,intlist#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2,c_5/1,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {int#,intlist#} and constructors {0,cons,nil,s} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () **** Step 1.b:5.a:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: int#(0(),s(y)) -> c_2(int#(s(0()),s(y))) int#(s(x),s(y)) -> c_4(intlist#(int(x,y)),int#(x,y)) - Weak TRS: int(x,x) -> cons(x,nil()) int(0(),s(y)) -> cons(0(),int(s(0()),s(y))) int(s(x),0()) -> nil() int(s(x),s(y)) -> intlist(int(x,y)) intlist(cons(x,y)) -> cons(s(x),intlist(y)) intlist(cons(x,nil())) -> cons(s(x),nil()) intlist(nil()) -> nil() - Signature: {int/2,intlist/1,int#/2,intlist#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2,c_5/1,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {int#,intlist#} and constructors {0,cons,nil,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:int#(0(),s(y)) -> c_2(int#(s(0()),s(y))) -->_1 int#(s(x),s(y)) -> c_4(intlist#(int(x,y)),int#(x,y)):2 2:W:int#(s(x),s(y)) -> c_4(intlist#(int(x,y)),int#(x,y)) -->_2 int#(s(x),s(y)) -> c_4(intlist#(int(x,y)),int#(x,y)):2 -->_2 int#(0(),s(y)) -> c_2(int#(s(0()),s(y))):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: int#(0(),s(y)) -> c_2(int#(s(0()),s(y))) 2: int#(s(x),s(y)) -> c_4(intlist#(int(x,y)),int#(x,y)) **** Step 1.b:5.a:1.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: int(x,x) -> cons(x,nil()) int(0(),s(y)) -> cons(0(),int(s(0()),s(y))) int(s(x),0()) -> nil() int(s(x),s(y)) -> intlist(int(x,y)) intlist(cons(x,y)) -> cons(s(x),intlist(y)) intlist(cons(x,nil())) -> cons(s(x),nil()) intlist(nil()) -> nil() - Signature: {int/2,intlist/1,int#/2,intlist#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2,c_5/1,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {int#,intlist#} and constructors {0,cons,nil,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). *** Step 1.b:5.b:1: Failure MAYBE + Considered Problem: - Strict DPs: intlist#(cons(x,y)) -> c_5(intlist#(y)) - Weak DPs: int#(0(),s(y)) -> int#(s(0()),s(y)) int#(s(x),s(y)) -> int#(x,y) int#(s(x),s(y)) -> intlist#(int(x,y)) - Weak TRS: int(x,x) -> cons(x,nil()) int(0(),s(y)) -> cons(0(),int(s(0()),s(y))) int(s(x),0()) -> nil() int(s(x),s(y)) -> intlist(int(x,y)) intlist(cons(x,y)) -> cons(s(x),intlist(y)) intlist(cons(x,nil())) -> cons(s(x),nil()) intlist(nil()) -> nil() - Signature: {int/2,intlist/1,int#/2,intlist#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2,c_5/1,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {int#,intlist#} and constructors {0,cons,nil,s} + Applied Processor: EmptyProcessor + Details: The problem is still open. WORST_CASE(Omega(n^1),?)