/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 242 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 58 ms] (14) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: div(x, s(y)) -> d(x, s(y), 0) d(x, s(y), z) -> cond(ge(x, z), x, y, z) cond(true, x, y, z) -> s(d(x, s(y), plus(s(y), z))) cond(false, x, y, z) -> 0 ge(u, 0) -> true ge(0, s(v)) -> false ge(s(u), s(v)) -> ge(u, v) plus(n, 0) -> n plus(n, s(m)) -> s(plus(n, m)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: div(x, s(y)) -> d(x, s(y), 0') d(x, s(y), z) -> cond(ge(x, z), x, y, z) cond(true, x, y, z) -> s(d(x, s(y), plus(s(y), z))) cond(false, x, y, z) -> 0' ge(u, 0') -> true ge(0', s(v)) -> false ge(s(u), s(v)) -> ge(u, v) plus(n, 0') -> n plus(n, s(m)) -> s(plus(n, m)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: div(x, s(y)) -> d(x, s(y), 0') d(x, s(y), z) -> cond(ge(x, z), x, y, z) cond(true, x, y, z) -> s(d(x, s(y), plus(s(y), z))) cond(false, x, y, z) -> 0' ge(u, 0') -> true ge(0', s(v)) -> false ge(s(u), s(v)) -> ge(u, v) plus(n, 0') -> n plus(n, s(m)) -> s(plus(n, m)) Types: div :: s:0' -> s:0' -> s:0' s :: s:0' -> s:0' d :: s:0' -> s:0' -> s:0' -> s:0' 0' :: s:0' cond :: true:false -> s:0' -> s:0' -> s:0' -> s:0' ge :: s:0' -> s:0' -> true:false true :: true:false plus :: s:0' -> s:0' -> s:0' false :: true:false hole_s:0'1_0 :: s:0' hole_true:false2_0 :: true:false gen_s:0'3_0 :: Nat -> s:0' ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: d, ge, plus They will be analysed ascendingly in the following order: ge < d plus < d ---------------------------------------- (6) Obligation: TRS: Rules: div(x, s(y)) -> d(x, s(y), 0') d(x, s(y), z) -> cond(ge(x, z), x, y, z) cond(true, x, y, z) -> s(d(x, s(y), plus(s(y), z))) cond(false, x, y, z) -> 0' ge(u, 0') -> true ge(0', s(v)) -> false ge(s(u), s(v)) -> ge(u, v) plus(n, 0') -> n plus(n, s(m)) -> s(plus(n, m)) Types: div :: s:0' -> s:0' -> s:0' s :: s:0' -> s:0' d :: s:0' -> s:0' -> s:0' -> s:0' 0' :: s:0' cond :: true:false -> s:0' -> s:0' -> s:0' -> s:0' ge :: s:0' -> s:0' -> true:false true :: true:false plus :: s:0' -> s:0' -> s:0' false :: true:false hole_s:0'1_0 :: s:0' hole_true:false2_0 :: true:false gen_s:0'3_0 :: Nat -> s:0' Generator Equations: gen_s:0'3_0(0) <=> 0' gen_s:0'3_0(+(x, 1)) <=> s(gen_s:0'3_0(x)) The following defined symbols remain to be analysed: ge, d, plus They will be analysed ascendingly in the following order: ge < d plus < d ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: ge(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) -> true, rt in Omega(1 + n5_0) Induction Base: ge(gen_s:0'3_0(0), gen_s:0'3_0(0)) ->_R^Omega(1) true Induction Step: ge(gen_s:0'3_0(+(n5_0, 1)), gen_s:0'3_0(+(n5_0, 1))) ->_R^Omega(1) ge(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) ->_IH true We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: div(x, s(y)) -> d(x, s(y), 0') d(x, s(y), z) -> cond(ge(x, z), x, y, z) cond(true, x, y, z) -> s(d(x, s(y), plus(s(y), z))) cond(false, x, y, z) -> 0' ge(u, 0') -> true ge(0', s(v)) -> false ge(s(u), s(v)) -> ge(u, v) plus(n, 0') -> n plus(n, s(m)) -> s(plus(n, m)) Types: div :: s:0' -> s:0' -> s:0' s :: s:0' -> s:0' d :: s:0' -> s:0' -> s:0' -> s:0' 0' :: s:0' cond :: true:false -> s:0' -> s:0' -> s:0' -> s:0' ge :: s:0' -> s:0' -> true:false true :: true:false plus :: s:0' -> s:0' -> s:0' false :: true:false hole_s:0'1_0 :: s:0' hole_true:false2_0 :: true:false gen_s:0'3_0 :: Nat -> s:0' Generator Equations: gen_s:0'3_0(0) <=> 0' gen_s:0'3_0(+(x, 1)) <=> s(gen_s:0'3_0(x)) The following defined symbols remain to be analysed: ge, d, plus They will be analysed ascendingly in the following order: ge < d plus < d ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: div(x, s(y)) -> d(x, s(y), 0') d(x, s(y), z) -> cond(ge(x, z), x, y, z) cond(true, x, y, z) -> s(d(x, s(y), plus(s(y), z))) cond(false, x, y, z) -> 0' ge(u, 0') -> true ge(0', s(v)) -> false ge(s(u), s(v)) -> ge(u, v) plus(n, 0') -> n plus(n, s(m)) -> s(plus(n, m)) Types: div :: s:0' -> s:0' -> s:0' s :: s:0' -> s:0' d :: s:0' -> s:0' -> s:0' -> s:0' 0' :: s:0' cond :: true:false -> s:0' -> s:0' -> s:0' -> s:0' ge :: s:0' -> s:0' -> true:false true :: true:false plus :: s:0' -> s:0' -> s:0' false :: true:false hole_s:0'1_0 :: s:0' hole_true:false2_0 :: true:false gen_s:0'3_0 :: Nat -> s:0' Lemmas: ge(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) -> true, rt in Omega(1 + n5_0) Generator Equations: gen_s:0'3_0(0) <=> 0' gen_s:0'3_0(+(x, 1)) <=> s(gen_s:0'3_0(x)) The following defined symbols remain to be analysed: plus, d They will be analysed ascendingly in the following order: plus < d ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: plus(gen_s:0'3_0(a), gen_s:0'3_0(n245_0)) -> gen_s:0'3_0(+(n245_0, a)), rt in Omega(1 + n245_0) Induction Base: plus(gen_s:0'3_0(a), gen_s:0'3_0(0)) ->_R^Omega(1) gen_s:0'3_0(a) Induction Step: plus(gen_s:0'3_0(a), gen_s:0'3_0(+(n245_0, 1))) ->_R^Omega(1) s(plus(gen_s:0'3_0(a), gen_s:0'3_0(n245_0))) ->_IH s(gen_s:0'3_0(+(a, c246_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: TRS: Rules: div(x, s(y)) -> d(x, s(y), 0') d(x, s(y), z) -> cond(ge(x, z), x, y, z) cond(true, x, y, z) -> s(d(x, s(y), plus(s(y), z))) cond(false, x, y, z) -> 0' ge(u, 0') -> true ge(0', s(v)) -> false ge(s(u), s(v)) -> ge(u, v) plus(n, 0') -> n plus(n, s(m)) -> s(plus(n, m)) Types: div :: s:0' -> s:0' -> s:0' s :: s:0' -> s:0' d :: s:0' -> s:0' -> s:0' -> s:0' 0' :: s:0' cond :: true:false -> s:0' -> s:0' -> s:0' -> s:0' ge :: s:0' -> s:0' -> true:false true :: true:false plus :: s:0' -> s:0' -> s:0' false :: true:false hole_s:0'1_0 :: s:0' hole_true:false2_0 :: true:false gen_s:0'3_0 :: Nat -> s:0' Lemmas: ge(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) -> true, rt in Omega(1 + n5_0) plus(gen_s:0'3_0(a), gen_s:0'3_0(n245_0)) -> gen_s:0'3_0(+(n245_0, a)), rt in Omega(1 + n245_0) Generator Equations: gen_s:0'3_0(0) <=> 0' gen_s:0'3_0(+(x, 1)) <=> s(gen_s:0'3_0(x)) The following defined symbols remain to be analysed: d