/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) SlicingProof [LOWER BOUND(ID), 0 ms] (4) CpxTRS (5) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (6) typed CpxTrs (7) OrderProof [LOWER BOUND(ID), 0 ms] (8) typed CpxTrs (9) RewriteLemmaProof [LOWER BOUND(ID), 306 ms] (10) BEST (11) proven lower bound (12) LowerBoundPropagationProof [FINISHED, 0 ms] (13) BOUNDS(n^1, INF) (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 44 ms] (16) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) lastbit(0) -> 0 lastbit(s(0)) -> s(0) lastbit(s(s(x))) -> lastbit(x) zero(0) -> true zero(s(x)) -> false conv(x) -> conviter(x, cons(0, nil)) conviter(x, l) -> if(zero(x), x, l) if(true, x, l) -> l if(false, x, l) -> conviter(half(x), cons(lastbit(x), l)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: half(0') -> 0' half(s(0')) -> 0' half(s(s(x))) -> s(half(x)) lastbit(0') -> 0' lastbit(s(0')) -> s(0') lastbit(s(s(x))) -> lastbit(x) zero(0') -> true zero(s(x)) -> false conv(x) -> conviter(x, cons(0', nil)) conviter(x, l) -> if(zero(x), x, l) if(true, x, l) -> l if(false, x, l) -> conviter(half(x), cons(lastbit(x), l)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) SlicingProof (LOWER BOUND(ID)) Sliced the following arguments: cons/1 ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: half(0') -> 0' half(s(0')) -> 0' half(s(s(x))) -> s(half(x)) lastbit(0') -> 0' lastbit(s(0')) -> s(0') lastbit(s(s(x))) -> lastbit(x) zero(0') -> true zero(s(x)) -> false conv(x) -> conviter(x, cons(0')) conviter(x, l) -> if(zero(x), x, l) if(true, x, l) -> l if(false, x, l) -> conviter(half(x), cons(lastbit(x))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (5) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (6) Obligation: TRS: Rules: half(0') -> 0' half(s(0')) -> 0' half(s(s(x))) -> s(half(x)) lastbit(0') -> 0' lastbit(s(0')) -> s(0') lastbit(s(s(x))) -> lastbit(x) zero(0') -> true zero(s(x)) -> false conv(x) -> conviter(x, cons(0')) conviter(x, l) -> if(zero(x), x, l) if(true, x, l) -> l if(false, x, l) -> conviter(half(x), cons(lastbit(x))) Types: half :: 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s lastbit :: 0':s -> 0':s zero :: 0':s -> true:false true :: true:false false :: true:false conv :: 0':s -> cons conviter :: 0':s -> cons -> cons cons :: 0':s -> cons if :: true:false -> 0':s -> cons -> cons hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false hole_cons3_0 :: cons gen_0':s4_0 :: Nat -> 0':s ---------------------------------------- (7) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: half, lastbit, conviter They will be analysed ascendingly in the following order: half < conviter lastbit < conviter ---------------------------------------- (8) Obligation: TRS: Rules: half(0') -> 0' half(s(0')) -> 0' half(s(s(x))) -> s(half(x)) lastbit(0') -> 0' lastbit(s(0')) -> s(0') lastbit(s(s(x))) -> lastbit(x) zero(0') -> true zero(s(x)) -> false conv(x) -> conviter(x, cons(0')) conviter(x, l) -> if(zero(x), x, l) if(true, x, l) -> l if(false, x, l) -> conviter(half(x), cons(lastbit(x))) Types: half :: 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s lastbit :: 0':s -> 0':s zero :: 0':s -> true:false true :: true:false false :: true:false conv :: 0':s -> cons conviter :: 0':s -> cons -> cons cons :: 0':s -> cons if :: true:false -> 0':s -> cons -> cons hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false hole_cons3_0 :: cons gen_0':s4_0 :: Nat -> 0':s Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) The following defined symbols remain to be analysed: half, lastbit, conviter They will be analysed ascendingly in the following order: half < conviter lastbit < conviter ---------------------------------------- (9) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: half(gen_0':s4_0(*(2, n6_0))) -> gen_0':s4_0(n6_0), rt in Omega(1 + n6_0) Induction Base: half(gen_0':s4_0(*(2, 0))) ->_R^Omega(1) 0' Induction Step: half(gen_0':s4_0(*(2, +(n6_0, 1)))) ->_R^Omega(1) s(half(gen_0':s4_0(*(2, n6_0)))) ->_IH s(gen_0':s4_0(c7_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (10) Complex Obligation (BEST) ---------------------------------------- (11) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: half(0') -> 0' half(s(0')) -> 0' half(s(s(x))) -> s(half(x)) lastbit(0') -> 0' lastbit(s(0')) -> s(0') lastbit(s(s(x))) -> lastbit(x) zero(0') -> true zero(s(x)) -> false conv(x) -> conviter(x, cons(0')) conviter(x, l) -> if(zero(x), x, l) if(true, x, l) -> l if(false, x, l) -> conviter(half(x), cons(lastbit(x))) Types: half :: 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s lastbit :: 0':s -> 0':s zero :: 0':s -> true:false true :: true:false false :: true:false conv :: 0':s -> cons conviter :: 0':s -> cons -> cons cons :: 0':s -> cons if :: true:false -> 0':s -> cons -> cons hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false hole_cons3_0 :: cons gen_0':s4_0 :: Nat -> 0':s Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) The following defined symbols remain to be analysed: half, lastbit, conviter They will be analysed ascendingly in the following order: half < conviter lastbit < conviter ---------------------------------------- (12) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (13) BOUNDS(n^1, INF) ---------------------------------------- (14) Obligation: TRS: Rules: half(0') -> 0' half(s(0')) -> 0' half(s(s(x))) -> s(half(x)) lastbit(0') -> 0' lastbit(s(0')) -> s(0') lastbit(s(s(x))) -> lastbit(x) zero(0') -> true zero(s(x)) -> false conv(x) -> conviter(x, cons(0')) conviter(x, l) -> if(zero(x), x, l) if(true, x, l) -> l if(false, x, l) -> conviter(half(x), cons(lastbit(x))) Types: half :: 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s lastbit :: 0':s -> 0':s zero :: 0':s -> true:false true :: true:false false :: true:false conv :: 0':s -> cons conviter :: 0':s -> cons -> cons cons :: 0':s -> cons if :: true:false -> 0':s -> cons -> cons hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false hole_cons3_0 :: cons gen_0':s4_0 :: Nat -> 0':s Lemmas: half(gen_0':s4_0(*(2, n6_0))) -> gen_0':s4_0(n6_0), rt in Omega(1 + n6_0) Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) The following defined symbols remain to be analysed: lastbit, conviter They will be analysed ascendingly in the following order: lastbit < conviter ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: lastbit(gen_0':s4_0(*(2, n308_0))) -> gen_0':s4_0(0), rt in Omega(1 + n308_0) Induction Base: lastbit(gen_0':s4_0(*(2, 0))) ->_R^Omega(1) 0' Induction Step: lastbit(gen_0':s4_0(*(2, +(n308_0, 1)))) ->_R^Omega(1) lastbit(gen_0':s4_0(*(2, n308_0))) ->_IH gen_0':s4_0(0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (16) Obligation: TRS: Rules: half(0') -> 0' half(s(0')) -> 0' half(s(s(x))) -> s(half(x)) lastbit(0') -> 0' lastbit(s(0')) -> s(0') lastbit(s(s(x))) -> lastbit(x) zero(0') -> true zero(s(x)) -> false conv(x) -> conviter(x, cons(0')) conviter(x, l) -> if(zero(x), x, l) if(true, x, l) -> l if(false, x, l) -> conviter(half(x), cons(lastbit(x))) Types: half :: 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s lastbit :: 0':s -> 0':s zero :: 0':s -> true:false true :: true:false false :: true:false conv :: 0':s -> cons conviter :: 0':s -> cons -> cons cons :: 0':s -> cons if :: true:false -> 0':s -> cons -> cons hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false hole_cons3_0 :: cons gen_0':s4_0 :: Nat -> 0':s Lemmas: half(gen_0':s4_0(*(2, n6_0))) -> gen_0':s4_0(n6_0), rt in Omega(1 + n6_0) lastbit(gen_0':s4_0(*(2, n308_0))) -> gen_0':s4_0(0), rt in Omega(1 + n308_0) Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) The following defined symbols remain to be analysed: conviter