/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^2)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). (0) CpxTRS (1) DependencyGraphProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) NestedDefinedSymbolProof [UPPER BOUND(ID), 0 ms] (4) CpxTRS (5) NonCtorToCtorProof [UPPER BOUND(ID), 0 ms] (6) CpxRelTRS (7) RcToIrcProof [BOTH BOUNDS(ID, ID), 4 ms] (8) CpxRelTRS (9) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (10) CdtProblem (11) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CdtProblem (13) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CdtProblem (15) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 87 ms] (16) CdtProblem (17) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 2 ms] (18) CdtProblem (19) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 145 ms] (20) CdtProblem (21) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (22) BOUNDS(1, 1) (23) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (24) TRS for Loop Detection (25) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (26) BEST (27) proven lower bound (28) LowerBoundPropagationProof [FINISHED, 0 ms] (29) BOUNDS(n^1, INF) (30) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: a(h, h, h, x) -> s(x) a(l, x, s(y), h) -> a(l, x, y, s(h)) a(l, x, s(y), s(z)) -> a(l, x, y, a(l, x, s(y), z)) a(l, s(x), h, z) -> a(l, x, z, z) a(s(l), h, h, z) -> a(l, z, h, z) +(x, h) -> x +(h, x) -> x +(s(x), s(y)) -> s(s(+(x, y))) +(+(x, y), z) -> +(x, +(y, z)) s(h) -> 1 app(nil, k) -> k app(l, nil) -> l app(cons(x, l), k) -> cons(x, app(l, k)) sum(cons(x, nil)) -> cons(x, nil) sum(cons(x, cons(y, l))) -> sum(cons(a(x, y, h, h), l)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DependencyGraphProof (UPPER BOUND(ID)) The following rules are not reachable from basic terms in the dependency graph and can be removed: +(s(x), s(y)) -> s(s(+(x, y))) +(+(x, y), z) -> +(x, +(y, z)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: a(h, h, h, x) -> s(x) a(l, x, s(y), h) -> a(l, x, y, s(h)) a(l, x, s(y), s(z)) -> a(l, x, y, a(l, x, s(y), z)) a(l, s(x), h, z) -> a(l, x, z, z) a(s(l), h, h, z) -> a(l, z, h, z) +(x, h) -> x +(h, x) -> x s(h) -> 1 app(nil, k) -> k app(l, nil) -> l app(cons(x, l), k) -> cons(x, app(l, k)) sum(cons(x, nil)) -> cons(x, nil) sum(cons(x, cons(y, l))) -> sum(cons(a(x, y, h, h), l)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) NestedDefinedSymbolProof (UPPER BOUND(ID)) The following defined symbols can occur below the 0th argument of sum: s, a The following defined symbols can occur below the 0th argument of a: s, a The following defined symbols can occur below the 1th argument of a: s, a Hence, the left-hand sides of the following rules are not basic-reachable and can be removed: a(l, x, s(y), h) -> a(l, x, y, s(h)) a(l, x, s(y), s(z)) -> a(l, x, y, a(l, x, s(y), z)) ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: a(h, h, h, x) -> s(x) a(l, s(x), h, z) -> a(l, x, z, z) a(s(l), h, h, z) -> a(l, z, h, z) +(x, h) -> x +(h, x) -> x s(h) -> 1 app(nil, k) -> k app(l, nil) -> l app(cons(x, l), k) -> cons(x, app(l, k)) sum(cons(x, nil)) -> cons(x, nil) sum(cons(x, cons(y, l))) -> sum(cons(a(x, y, h, h), l)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (5) NonCtorToCtorProof (UPPER BOUND(ID)) transformed non-ctor to ctor-system ---------------------------------------- (6) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: a(h, h, h, x) -> s(x) +(x, h) -> x +(h, x) -> x s(h) -> 1 app(nil, k) -> k app(l, nil) -> l app(cons(x, l), k) -> cons(x, app(l, k)) sum(cons(x, nil)) -> cons(x, nil) sum(cons(x, cons(y, l))) -> sum(cons(a(x, y, h, h), l)) a(c_s(l), h, h, z) -> a(l, z, h, z) a(l, c_s(x), h, z) -> a(l, x, z, z) The (relative) TRS S consists of the following rules: s(x0) -> c_s(x0) Rewrite Strategy: FULL ---------------------------------------- (7) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. The duplicating contexts are: a(c_s(l), h, h, []) a(l, c_s(x), h, []) The defined contexts are: sum(cons([], x1)) a([], x1, h, h) a([], x1, h, x2) a([], x1, x2, x3) [] just represents basic- or constructor-terms in the following defined contexts: sum(cons([], x1)) As the TRS is an overlay system and the defined contexts and the duplicating contexts don't overlap, we have rc = irc. ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: a(h, h, h, x) -> s(x) +(x, h) -> x +(h, x) -> x s(h) -> 1 app(nil, k) -> k app(l, nil) -> l app(cons(x, l), k) -> cons(x, app(l, k)) sum(cons(x, nil)) -> cons(x, nil) sum(cons(x, cons(y, l))) -> sum(cons(a(x, y, h, h), l)) a(c_s(l), h, h, z) -> a(l, z, h, z) a(l, c_s(x), h, z) -> a(l, x, z, z) The (relative) TRS S consists of the following rules: s(x0) -> c_s(x0) Rewrite Strategy: INNERMOST ---------------------------------------- (9) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules: s(z0) -> c_s(z0) s(h) -> 1 a(h, h, h, z0) -> s(z0) a(c_s(z0), h, h, z1) -> a(z0, z1, h, z1) a(z0, c_s(z1), h, z2) -> a(z0, z1, z2, z2) +(z0, h) -> z0 +(h, z0) -> z0 app(nil, z0) -> z0 app(z0, nil) -> z0 app(cons(z0, z1), z2) -> cons(z0, app(z1, z2)) sum(cons(z0, nil)) -> cons(z0, nil) sum(cons(z0, cons(z1, z2))) -> sum(cons(a(z0, z1, h, h), z2)) Tuples: S(z0) -> c S(h) -> c1 A(h, h, h, z0) -> c2(S(z0)) A(c_s(z0), h, h, z1) -> c3(A(z0, z1, h, z1)) A(z0, c_s(z1), h, z2) -> c4(A(z0, z1, z2, z2)) +'(z0, h) -> c5 +'(h, z0) -> c6 APP(nil, z0) -> c7 APP(z0, nil) -> c8 APP(cons(z0, z1), z2) -> c9(APP(z1, z2)) SUM(cons(z0, nil)) -> c10 SUM(cons(z0, cons(z1, z2))) -> c11(SUM(cons(a(z0, z1, h, h), z2)), A(z0, z1, h, h)) S tuples: S(h) -> c1 A(h, h, h, z0) -> c2(S(z0)) A(c_s(z0), h, h, z1) -> c3(A(z0, z1, h, z1)) A(z0, c_s(z1), h, z2) -> c4(A(z0, z1, z2, z2)) +'(z0, h) -> c5 +'(h, z0) -> c6 APP(nil, z0) -> c7 APP(z0, nil) -> c8 APP(cons(z0, z1), z2) -> c9(APP(z1, z2)) SUM(cons(z0, nil)) -> c10 SUM(cons(z0, cons(z1, z2))) -> c11(SUM(cons(a(z0, z1, h, h), z2)), A(z0, z1, h, h)) K tuples:none Defined Rule Symbols: a_4, +_2, s_1, app_2, sum_1 Defined Pair Symbols: S_1, A_4, +'_2, APP_2, SUM_1 Compound Symbols: c, c1, c2_1, c3_1, c4_1, c5, c6, c7, c8, c9_1, c10, c11_2 ---------------------------------------- (11) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 8 trailing nodes: A(h, h, h, z0) -> c2(S(z0)) SUM(cons(z0, nil)) -> c10 APP(z0, nil) -> c8 S(z0) -> c S(h) -> c1 +'(h, z0) -> c6 APP(nil, z0) -> c7 +'(z0, h) -> c5 ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules: s(z0) -> c_s(z0) s(h) -> 1 a(h, h, h, z0) -> s(z0) a(c_s(z0), h, h, z1) -> a(z0, z1, h, z1) a(z0, c_s(z1), h, z2) -> a(z0, z1, z2, z2) +(z0, h) -> z0 +(h, z0) -> z0 app(nil, z0) -> z0 app(z0, nil) -> z0 app(cons(z0, z1), z2) -> cons(z0, app(z1, z2)) sum(cons(z0, nil)) -> cons(z0, nil) sum(cons(z0, cons(z1, z2))) -> sum(cons(a(z0, z1, h, h), z2)) Tuples: A(c_s(z0), h, h, z1) -> c3(A(z0, z1, h, z1)) A(z0, c_s(z1), h, z2) -> c4(A(z0, z1, z2, z2)) APP(cons(z0, z1), z2) -> c9(APP(z1, z2)) SUM(cons(z0, cons(z1, z2))) -> c11(SUM(cons(a(z0, z1, h, h), z2)), A(z0, z1, h, h)) S tuples: A(c_s(z0), h, h, z1) -> c3(A(z0, z1, h, z1)) A(z0, c_s(z1), h, z2) -> c4(A(z0, z1, z2, z2)) APP(cons(z0, z1), z2) -> c9(APP(z1, z2)) SUM(cons(z0, cons(z1, z2))) -> c11(SUM(cons(a(z0, z1, h, h), z2)), A(z0, z1, h, h)) K tuples:none Defined Rule Symbols: a_4, +_2, s_1, app_2, sum_1 Defined Pair Symbols: A_4, APP_2, SUM_1 Compound Symbols: c3_1, c4_1, c9_1, c11_2 ---------------------------------------- (13) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: +(z0, h) -> z0 +(h, z0) -> z0 app(nil, z0) -> z0 app(z0, nil) -> z0 app(cons(z0, z1), z2) -> cons(z0, app(z1, z2)) sum(cons(z0, nil)) -> cons(z0, nil) sum(cons(z0, cons(z1, z2))) -> sum(cons(a(z0, z1, h, h), z2)) ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules: a(h, h, h, z0) -> s(z0) a(c_s(z0), h, h, z1) -> a(z0, z1, h, z1) a(z0, c_s(z1), h, z2) -> a(z0, z1, z2, z2) s(z0) -> c_s(z0) s(h) -> 1 Tuples: A(c_s(z0), h, h, z1) -> c3(A(z0, z1, h, z1)) A(z0, c_s(z1), h, z2) -> c4(A(z0, z1, z2, z2)) APP(cons(z0, z1), z2) -> c9(APP(z1, z2)) SUM(cons(z0, cons(z1, z2))) -> c11(SUM(cons(a(z0, z1, h, h), z2)), A(z0, z1, h, h)) S tuples: A(c_s(z0), h, h, z1) -> c3(A(z0, z1, h, z1)) A(z0, c_s(z1), h, z2) -> c4(A(z0, z1, z2, z2)) APP(cons(z0, z1), z2) -> c9(APP(z1, z2)) SUM(cons(z0, cons(z1, z2))) -> c11(SUM(cons(a(z0, z1, h, h), z2)), A(z0, z1, h, h)) K tuples:none Defined Rule Symbols: a_4, s_1 Defined Pair Symbols: A_4, APP_2, SUM_1 Compound Symbols: c3_1, c4_1, c9_1, c11_2 ---------------------------------------- (15) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. APP(cons(z0, z1), z2) -> c9(APP(z1, z2)) SUM(cons(z0, cons(z1, z2))) -> c11(SUM(cons(a(z0, z1, h, h), z2)), A(z0, z1, h, h)) We considered the (Usable) Rules: s(z0) -> c_s(z0) a(h, h, h, z0) -> s(z0) a(z0, c_s(z1), h, z2) -> a(z0, z1, z2, z2) a(c_s(z0), h, h, z1) -> a(z0, z1, h, z1) s(h) -> 1 And the Tuples: A(c_s(z0), h, h, z1) -> c3(A(z0, z1, h, z1)) A(z0, c_s(z1), h, z2) -> c4(A(z0, z1, z2, z2)) APP(cons(z0, z1), z2) -> c9(APP(z1, z2)) SUM(cons(z0, cons(z1, z2))) -> c11(SUM(cons(a(z0, z1, h, h), z2)), A(z0, z1, h, h)) The order we found is given by the following interpretation: Polynomial interpretation : POL(1) = 0 POL(A(x_1, x_2, x_3, x_4)) = 0 POL(APP(x_1, x_2)) = x_1 POL(SUM(x_1)) = x_1 POL(a(x_1, x_2, x_3, x_4)) = 0 POL(c11(x_1, x_2)) = x_1 + x_2 POL(c3(x_1)) = x_1 POL(c4(x_1)) = x_1 POL(c9(x_1)) = x_1 POL(c_s(x_1)) = 0 POL(cons(x_1, x_2)) = [1] + x_1 + x_2 POL(h) = [1] POL(s(x_1)) = 0 ---------------------------------------- (16) Obligation: Complexity Dependency Tuples Problem Rules: a(h, h, h, z0) -> s(z0) a(c_s(z0), h, h, z1) -> a(z0, z1, h, z1) a(z0, c_s(z1), h, z2) -> a(z0, z1, z2, z2) s(z0) -> c_s(z0) s(h) -> 1 Tuples: A(c_s(z0), h, h, z1) -> c3(A(z0, z1, h, z1)) A(z0, c_s(z1), h, z2) -> c4(A(z0, z1, z2, z2)) APP(cons(z0, z1), z2) -> c9(APP(z1, z2)) SUM(cons(z0, cons(z1, z2))) -> c11(SUM(cons(a(z0, z1, h, h), z2)), A(z0, z1, h, h)) S tuples: A(c_s(z0), h, h, z1) -> c3(A(z0, z1, h, z1)) A(z0, c_s(z1), h, z2) -> c4(A(z0, z1, z2, z2)) K tuples: APP(cons(z0, z1), z2) -> c9(APP(z1, z2)) SUM(cons(z0, cons(z1, z2))) -> c11(SUM(cons(a(z0, z1, h, h), z2)), A(z0, z1, h, h)) Defined Rule Symbols: a_4, s_1 Defined Pair Symbols: A_4, APP_2, SUM_1 Compound Symbols: c3_1, c4_1, c9_1, c11_2 ---------------------------------------- (17) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. A(c_s(z0), h, h, z1) -> c3(A(z0, z1, h, z1)) We considered the (Usable) Rules: s(z0) -> c_s(z0) a(h, h, h, z0) -> s(z0) a(z0, c_s(z1), h, z2) -> a(z0, z1, z2, z2) a(c_s(z0), h, h, z1) -> a(z0, z1, h, z1) s(h) -> 1 And the Tuples: A(c_s(z0), h, h, z1) -> c3(A(z0, z1, h, z1)) A(z0, c_s(z1), h, z2) -> c4(A(z0, z1, z2, z2)) APP(cons(z0, z1), z2) -> c9(APP(z1, z2)) SUM(cons(z0, cons(z1, z2))) -> c11(SUM(cons(a(z0, z1, h, h), z2)), A(z0, z1, h, h)) The order we found is given by the following interpretation: Polynomial interpretation : POL(1) = [1] POL(A(x_1, x_2, x_3, x_4)) = x_1 + x_4 POL(APP(x_1, x_2)) = x_1 POL(SUM(x_1)) = x_1 POL(a(x_1, x_2, x_3, x_4)) = [1] + x_4 POL(c11(x_1, x_2)) = x_1 + x_2 POL(c3(x_1)) = x_1 POL(c4(x_1)) = x_1 POL(c9(x_1)) = x_1 POL(c_s(x_1)) = [1] + x_1 POL(cons(x_1, x_2)) = [1] + x_1 + x_2 POL(h) = 0 POL(s(x_1)) = [1] + x_1 ---------------------------------------- (18) Obligation: Complexity Dependency Tuples Problem Rules: a(h, h, h, z0) -> s(z0) a(c_s(z0), h, h, z1) -> a(z0, z1, h, z1) a(z0, c_s(z1), h, z2) -> a(z0, z1, z2, z2) s(z0) -> c_s(z0) s(h) -> 1 Tuples: A(c_s(z0), h, h, z1) -> c3(A(z0, z1, h, z1)) A(z0, c_s(z1), h, z2) -> c4(A(z0, z1, z2, z2)) APP(cons(z0, z1), z2) -> c9(APP(z1, z2)) SUM(cons(z0, cons(z1, z2))) -> c11(SUM(cons(a(z0, z1, h, h), z2)), A(z0, z1, h, h)) S tuples: A(z0, c_s(z1), h, z2) -> c4(A(z0, z1, z2, z2)) K tuples: APP(cons(z0, z1), z2) -> c9(APP(z1, z2)) SUM(cons(z0, cons(z1, z2))) -> c11(SUM(cons(a(z0, z1, h, h), z2)), A(z0, z1, h, h)) A(c_s(z0), h, h, z1) -> c3(A(z0, z1, h, z1)) Defined Rule Symbols: a_4, s_1 Defined Pair Symbols: A_4, APP_2, SUM_1 Compound Symbols: c3_1, c4_1, c9_1, c11_2 ---------------------------------------- (19) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. A(z0, c_s(z1), h, z2) -> c4(A(z0, z1, z2, z2)) We considered the (Usable) Rules: s(z0) -> c_s(z0) a(h, h, h, z0) -> s(z0) a(z0, c_s(z1), h, z2) -> a(z0, z1, z2, z2) a(c_s(z0), h, h, z1) -> a(z0, z1, h, z1) s(h) -> 1 And the Tuples: A(c_s(z0), h, h, z1) -> c3(A(z0, z1, h, z1)) A(z0, c_s(z1), h, z2) -> c4(A(z0, z1, z2, z2)) APP(cons(z0, z1), z2) -> c9(APP(z1, z2)) SUM(cons(z0, cons(z1, z2))) -> c11(SUM(cons(a(z0, z1, h, h), z2)), A(z0, z1, h, h)) The order we found is given by the following interpretation: Polynomial interpretation : POL(1) = [2] POL(A(x_1, x_2, x_3, x_4)) = x_2 + [2]x_4 + [2]x_4^2 + x_1*x_4 POL(APP(x_1, x_2)) = [2]x_1 + [2]x_1*x_2 + x_1^2 POL(SUM(x_1)) = x_1^2 POL(a(x_1, x_2, x_3, x_4)) = [2] + x_4 POL(c11(x_1, x_2)) = x_1 + x_2 POL(c3(x_1)) = x_1 POL(c4(x_1)) = x_1 POL(c9(x_1)) = x_1 POL(c_s(x_1)) = [1] + x_1 POL(cons(x_1, x_2)) = [2] + x_1 + x_2 POL(h) = 0 POL(s(x_1)) = [2] + x_1 ---------------------------------------- (20) Obligation: Complexity Dependency Tuples Problem Rules: a(h, h, h, z0) -> s(z0) a(c_s(z0), h, h, z1) -> a(z0, z1, h, z1) a(z0, c_s(z1), h, z2) -> a(z0, z1, z2, z2) s(z0) -> c_s(z0) s(h) -> 1 Tuples: A(c_s(z0), h, h, z1) -> c3(A(z0, z1, h, z1)) A(z0, c_s(z1), h, z2) -> c4(A(z0, z1, z2, z2)) APP(cons(z0, z1), z2) -> c9(APP(z1, z2)) SUM(cons(z0, cons(z1, z2))) -> c11(SUM(cons(a(z0, z1, h, h), z2)), A(z0, z1, h, h)) S tuples:none K tuples: APP(cons(z0, z1), z2) -> c9(APP(z1, z2)) SUM(cons(z0, cons(z1, z2))) -> c11(SUM(cons(a(z0, z1, h, h), z2)), A(z0, z1, h, h)) A(c_s(z0), h, h, z1) -> c3(A(z0, z1, h, z1)) A(z0, c_s(z1), h, z2) -> c4(A(z0, z1, z2, z2)) Defined Rule Symbols: a_4, s_1 Defined Pair Symbols: A_4, APP_2, SUM_1 Compound Symbols: c3_1, c4_1, c9_1, c11_2 ---------------------------------------- (21) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (22) BOUNDS(1, 1) ---------------------------------------- (23) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (24) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: a(h, h, h, x) -> s(x) a(l, x, s(y), h) -> a(l, x, y, s(h)) a(l, x, s(y), s(z)) -> a(l, x, y, a(l, x, s(y), z)) a(l, s(x), h, z) -> a(l, x, z, z) a(s(l), h, h, z) -> a(l, z, h, z) +(x, h) -> x +(h, x) -> x +(s(x), s(y)) -> s(s(+(x, y))) +(+(x, y), z) -> +(x, +(y, z)) s(h) -> 1 app(nil, k) -> k app(l, nil) -> l app(cons(x, l), k) -> cons(x, app(l, k)) sum(cons(x, nil)) -> cons(x, nil) sum(cons(x, cons(y, l))) -> sum(cons(a(x, y, h, h), l)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (25) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence app(cons(x, l), k) ->^+ cons(x, app(l, k)) gives rise to a decreasing loop by considering the right hand sides subterm at position [1]. The pumping substitution is [l / cons(x, l)]. The result substitution is [ ]. ---------------------------------------- (26) Complex Obligation (BEST) ---------------------------------------- (27) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: a(h, h, h, x) -> s(x) a(l, x, s(y), h) -> a(l, x, y, s(h)) a(l, x, s(y), s(z)) -> a(l, x, y, a(l, x, s(y), z)) a(l, s(x), h, z) -> a(l, x, z, z) a(s(l), h, h, z) -> a(l, z, h, z) +(x, h) -> x +(h, x) -> x +(s(x), s(y)) -> s(s(+(x, y))) +(+(x, y), z) -> +(x, +(y, z)) s(h) -> 1 app(nil, k) -> k app(l, nil) -> l app(cons(x, l), k) -> cons(x, app(l, k)) sum(cons(x, nil)) -> cons(x, nil) sum(cons(x, cons(y, l))) -> sum(cons(a(x, y, h, h), l)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (28) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (29) BOUNDS(n^1, INF) ---------------------------------------- (30) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: a(h, h, h, x) -> s(x) a(l, x, s(y), h) -> a(l, x, y, s(h)) a(l, x, s(y), s(z)) -> a(l, x, y, a(l, x, s(y), z)) a(l, s(x), h, z) -> a(l, x, z, z) a(s(l), h, h, z) -> a(l, z, h, z) +(x, h) -> x +(h, x) -> x +(s(x), s(y)) -> s(s(+(x, y))) +(+(x, y), z) -> +(x, +(y, z)) s(h) -> 1 app(nil, k) -> k app(l, nil) -> l app(cons(x, l), k) -> cons(x, app(l, k)) sum(cons(x, nil)) -> cons(x, nil) sum(cons(x, cons(y, l))) -> sum(cons(a(x, y, h, h), l)) S is empty. Rewrite Strategy: FULL