/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^3)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^3). (0) CpxTRS (1) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxWeightedTrs (5) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxTypedWeightedTrs (7) CompletionProof [UPPER BOUND(ID), 0 ms] (8) CpxTypedWeightedCompleteTrs (9) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxTypedWeightedCompleteTrs (11) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 5 ms] (12) CpxRNTS (13) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxRNTS (15) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxRNTS (17) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (18) CpxRNTS (19) IntTrsBoundProof [UPPER BOUND(ID), 488 ms] (20) CpxRNTS (21) IntTrsBoundProof [UPPER BOUND(ID), 219 ms] (22) CpxRNTS (23) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 899 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 379 ms] (28) CpxRNTS (29) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (30) CpxRNTS (31) IntTrsBoundProof [UPPER BOUND(ID), 372 ms] (32) CpxRNTS (33) IntTrsBoundProof [UPPER BOUND(ID), 4 ms] (34) CpxRNTS (35) FinalProof [FINISHED, 0 ms] (36) BOUNDS(1, n^3) (37) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (38) CpxTRS (39) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (40) typed CpxTrs (41) OrderProof [LOWER BOUND(ID), 0 ms] (42) typed CpxTrs (43) RewriteLemmaProof [LOWER BOUND(ID), 278 ms] (44) BEST (45) proven lower bound (46) LowerBoundPropagationProof [FINISHED, 0 ms] (47) BOUNDS(n^1, INF) (48) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^3). The TRS R consists of the following rules: minus(x, x) -> 0 minus(s(x), s(y)) -> minus(x, y) minus(0, x) -> 0 minus(x, 0) -> x div(s(x), s(y)) -> s(div(minus(x, y), s(y))) div(0, s(y)) -> 0 f(x, 0, b) -> x f(x, s(y), b) -> div(f(x, minus(s(y), s(0)), b), b) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. The duplicating contexts are: div(s(x), s([])) f(x, s(y), []) The defined contexts are: div([], x1) f(x0, [], x2) div([], s(x1)) minus([], x1) minus(s([]), s(0)) [] just represents basic- or constructor-terms in the following defined contexts: f(x0, [], x2) div([], s(x1)) As the TRS is an overlay system and the defined contexts and the duplicating contexts don't overlap, we have rc = irc. ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^3). The TRS R consists of the following rules: minus(x, x) -> 0 minus(s(x), s(y)) -> minus(x, y) minus(0, x) -> 0 minus(x, 0) -> x div(s(x), s(y)) -> s(div(minus(x, y), s(y))) div(0, s(y)) -> 0 f(x, 0, b) -> x f(x, s(y), b) -> div(f(x, minus(s(y), s(0)), b), b) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^3). The TRS R consists of the following rules: minus(x, x) -> 0 [1] minus(s(x), s(y)) -> minus(x, y) [1] minus(0, x) -> 0 [1] minus(x, 0) -> x [1] div(s(x), s(y)) -> s(div(minus(x, y), s(y))) [1] div(0, s(y)) -> 0 [1] f(x, 0, b) -> x [1] f(x, s(y), b) -> div(f(x, minus(s(y), s(0)), b), b) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (5) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: minus(x, x) -> 0 [1] minus(s(x), s(y)) -> minus(x, y) [1] minus(0, x) -> 0 [1] minus(x, 0) -> x [1] div(s(x), s(y)) -> s(div(minus(x, y), s(y))) [1] div(0, s(y)) -> 0 [1] f(x, 0, b) -> x [1] f(x, s(y), b) -> div(f(x, minus(s(y), s(0)), b), b) [1] The TRS has the following type information: minus :: 0:s -> 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s div :: 0:s -> 0:s -> 0:s f :: 0:s -> 0:s -> 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (7) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: none (c) The following functions are completely defined: f_3 minus_2 div_2 Due to the following rules being added: div(v0, v1) -> 0 [0] And the following fresh constants: none ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: minus(x, x) -> 0 [1] minus(s(x), s(y)) -> minus(x, y) [1] minus(0, x) -> 0 [1] minus(x, 0) -> x [1] div(s(x), s(y)) -> s(div(minus(x, y), s(y))) [1] div(0, s(y)) -> 0 [1] f(x, 0, b) -> x [1] f(x, s(y), b) -> div(f(x, minus(s(y), s(0)), b), b) [1] div(v0, v1) -> 0 [0] The TRS has the following type information: minus :: 0:s -> 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s div :: 0:s -> 0:s -> 0:s f :: 0:s -> 0:s -> 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (9) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: minus(x, x) -> 0 [1] minus(s(x), s(y)) -> minus(x, y) [1] minus(0, x) -> 0 [1] minus(x, 0) -> x [1] div(s(x), s(x)) -> s(div(0, s(x))) [2] div(s(s(x')), s(s(y'))) -> s(div(minus(x', y'), s(s(y')))) [2] div(s(0), s(y)) -> s(div(0, s(y))) [2] div(s(x), s(0)) -> s(div(x, s(0))) [2] div(0, s(y)) -> 0 [1] f(x, 0, b) -> x [1] f(x, s(0), b) -> div(f(x, 0, b), b) [2] f(x, s(y), b) -> div(f(x, minus(y, 0), b), b) [2] div(v0, v1) -> 0 [0] The TRS has the following type information: minus :: 0:s -> 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s div :: 0:s -> 0:s -> 0:s f :: 0:s -> 0:s -> 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (11) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 ---------------------------------------- (12) Obligation: Complexity RNTS consisting of the following rules: div(z, z') -{ 1 }-> 0 :|: z' = 1 + y, y >= 0, z = 0 div(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 div(z, z') -{ 2 }-> 1 + div(x, 1 + 0) :|: x >= 0, z' = 1 + 0, z = 1 + x div(z, z') -{ 2 }-> 1 + div(minus(x', y'), 1 + (1 + y')) :|: z' = 1 + (1 + y'), x' >= 0, y' >= 0, z = 1 + (1 + x') div(z, z') -{ 2 }-> 1 + div(0, 1 + x) :|: z' = 1 + x, x >= 0, z = 1 + x div(z, z') -{ 2 }-> 1 + div(0, 1 + y) :|: z' = 1 + y, z = 1 + 0, y >= 0 f(z, z', z'') -{ 1 }-> x :|: b >= 0, z'' = b, x >= 0, z = x, z' = 0 f(z, z', z'') -{ 2 }-> div(f(x, minus(y, 0), b), b) :|: z' = 1 + y, b >= 0, z'' = b, x >= 0, y >= 0, z = x f(z, z', z'') -{ 2 }-> div(f(x, 0, b), b) :|: b >= 0, z'' = b, x >= 0, z' = 1 + 0, z = x minus(z, z') -{ 1 }-> x :|: x >= 0, z = x, z' = 0 minus(z, z') -{ 1 }-> minus(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x minus(z, z') -{ 1 }-> 0 :|: z' = x, x >= 0, z = x minus(z, z') -{ 1 }-> 0 :|: z' = x, x >= 0, z = 0 ---------------------------------------- (13) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 div(z, z') -{ 2 }-> 1 + div(minus(z - 2, z' - 2), 1 + (1 + (z' - 2))) :|: z - 2 >= 0, z' - 2 >= 0 div(z, z') -{ 2 }-> 1 + div(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + (z' - 1) div(z, z') -{ 2 }-> 1 + div(0, 1 + (z' - 1)) :|: z = 1 + 0, z' - 1 >= 0 div(z, z') -{ 2 }-> 1 + div(z - 1, 1 + 0) :|: z - 1 >= 0, z' = 1 + 0 f(z, z', z'') -{ 1 }-> z :|: z'' >= 0, z >= 0, z' = 0 f(z, z', z'') -{ 2 }-> div(f(z, minus(z' - 1, 0), z''), z'') :|: z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 2 }-> div(f(z, 0, z''), z'') :|: z'' >= 0, z >= 0, z' = 1 + 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> minus(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ---------------------------------------- (15) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { minus } { div } { f } ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 div(z, z') -{ 2 }-> 1 + div(minus(z - 2, z' - 2), 1 + (1 + (z' - 2))) :|: z - 2 >= 0, z' - 2 >= 0 div(z, z') -{ 2 }-> 1 + div(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + (z' - 1) div(z, z') -{ 2 }-> 1 + div(0, 1 + (z' - 1)) :|: z = 1 + 0, z' - 1 >= 0 div(z, z') -{ 2 }-> 1 + div(z - 1, 1 + 0) :|: z - 1 >= 0, z' = 1 + 0 f(z, z', z'') -{ 1 }-> z :|: z'' >= 0, z >= 0, z' = 0 f(z, z', z'') -{ 2 }-> div(f(z, minus(z' - 1, 0), z''), z'') :|: z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 2 }-> div(f(z, 0, z''), z'') :|: z'' >= 0, z >= 0, z' = 1 + 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> minus(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 Function symbols to be analyzed: {minus}, {div}, {f} ---------------------------------------- (17) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 div(z, z') -{ 2 }-> 1 + div(minus(z - 2, z' - 2), 1 + (1 + (z' - 2))) :|: z - 2 >= 0, z' - 2 >= 0 div(z, z') -{ 2 }-> 1 + div(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + (z' - 1) div(z, z') -{ 2 }-> 1 + div(0, 1 + (z' - 1)) :|: z = 1 + 0, z' - 1 >= 0 div(z, z') -{ 2 }-> 1 + div(z - 1, 1 + 0) :|: z - 1 >= 0, z' = 1 + 0 f(z, z', z'') -{ 1 }-> z :|: z'' >= 0, z >= 0, z' = 0 f(z, z', z'') -{ 2 }-> div(f(z, minus(z' - 1, 0), z''), z'') :|: z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 2 }-> div(f(z, 0, z''), z'') :|: z'' >= 0, z >= 0, z' = 1 + 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> minus(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 Function symbols to be analyzed: {minus}, {div}, {f} ---------------------------------------- (19) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: minus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 div(z, z') -{ 2 }-> 1 + div(minus(z - 2, z' - 2), 1 + (1 + (z' - 2))) :|: z - 2 >= 0, z' - 2 >= 0 div(z, z') -{ 2 }-> 1 + div(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + (z' - 1) div(z, z') -{ 2 }-> 1 + div(0, 1 + (z' - 1)) :|: z = 1 + 0, z' - 1 >= 0 div(z, z') -{ 2 }-> 1 + div(z - 1, 1 + 0) :|: z - 1 >= 0, z' = 1 + 0 f(z, z', z'') -{ 1 }-> z :|: z'' >= 0, z >= 0, z' = 0 f(z, z', z'') -{ 2 }-> div(f(z, minus(z' - 1, 0), z''), z'') :|: z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 2 }-> div(f(z, 0, z''), z'') :|: z'' >= 0, z >= 0, z' = 1 + 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> minus(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 Function symbols to be analyzed: {minus}, {div}, {f} Previous analysis results are: minus: runtime: ?, size: O(n^1) [z] ---------------------------------------- (21) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: minus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 3 + z' ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 div(z, z') -{ 2 }-> 1 + div(minus(z - 2, z' - 2), 1 + (1 + (z' - 2))) :|: z - 2 >= 0, z' - 2 >= 0 div(z, z') -{ 2 }-> 1 + div(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + (z' - 1) div(z, z') -{ 2 }-> 1 + div(0, 1 + (z' - 1)) :|: z = 1 + 0, z' - 1 >= 0 div(z, z') -{ 2 }-> 1 + div(z - 1, 1 + 0) :|: z - 1 >= 0, z' = 1 + 0 f(z, z', z'') -{ 1 }-> z :|: z'' >= 0, z >= 0, z' = 0 f(z, z', z'') -{ 2 }-> div(f(z, minus(z' - 1, 0), z''), z'') :|: z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 2 }-> div(f(z, 0, z''), z'') :|: z'' >= 0, z >= 0, z' = 1 + 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> minus(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 Function symbols to be analyzed: {div}, {f} Previous analysis results are: minus: runtime: O(n^1) [3 + z'], size: O(n^1) [z] ---------------------------------------- (23) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 div(z, z') -{ 3 + z' }-> 1 + div(s', 1 + (1 + (z' - 2))) :|: s' >= 0, s' <= z - 2, z - 2 >= 0, z' - 2 >= 0 div(z, z') -{ 2 }-> 1 + div(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + (z' - 1) div(z, z') -{ 2 }-> 1 + div(0, 1 + (z' - 1)) :|: z = 1 + 0, z' - 1 >= 0 div(z, z') -{ 2 }-> 1 + div(z - 1, 1 + 0) :|: z - 1 >= 0, z' = 1 + 0 f(z, z', z'') -{ 1 }-> z :|: z'' >= 0, z >= 0, z' = 0 f(z, z', z'') -{ 5 }-> div(f(z, s'', z''), z'') :|: s'' >= 0, s'' <= z' - 1, z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 2 }-> div(f(z, 0, z''), z'') :|: z'' >= 0, z >= 0, z' = 1 + 0 minus(z, z') -{ 3 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 Function symbols to be analyzed: {div}, {f} Previous analysis results are: minus: runtime: O(n^1) [3 + z'], size: O(n^1) [z] ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: div after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 div(z, z') -{ 3 + z' }-> 1 + div(s', 1 + (1 + (z' - 2))) :|: s' >= 0, s' <= z - 2, z - 2 >= 0, z' - 2 >= 0 div(z, z') -{ 2 }-> 1 + div(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + (z' - 1) div(z, z') -{ 2 }-> 1 + div(0, 1 + (z' - 1)) :|: z = 1 + 0, z' - 1 >= 0 div(z, z') -{ 2 }-> 1 + div(z - 1, 1 + 0) :|: z - 1 >= 0, z' = 1 + 0 f(z, z', z'') -{ 1 }-> z :|: z'' >= 0, z >= 0, z' = 0 f(z, z', z'') -{ 5 }-> div(f(z, s'', z''), z'') :|: s'' >= 0, s'' <= z' - 1, z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 2 }-> div(f(z, 0, z''), z'') :|: z'' >= 0, z >= 0, z' = 1 + 0 minus(z, z') -{ 3 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 Function symbols to be analyzed: {div}, {f} Previous analysis results are: minus: runtime: O(n^1) [3 + z'], size: O(n^1) [z] div: runtime: ?, size: O(n^1) [z] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: div after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 1 + 9*z + z*z' ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 div(z, z') -{ 3 + z' }-> 1 + div(s', 1 + (1 + (z' - 2))) :|: s' >= 0, s' <= z - 2, z - 2 >= 0, z' - 2 >= 0 div(z, z') -{ 2 }-> 1 + div(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + (z' - 1) div(z, z') -{ 2 }-> 1 + div(0, 1 + (z' - 1)) :|: z = 1 + 0, z' - 1 >= 0 div(z, z') -{ 2 }-> 1 + div(z - 1, 1 + 0) :|: z - 1 >= 0, z' = 1 + 0 f(z, z', z'') -{ 1 }-> z :|: z'' >= 0, z >= 0, z' = 0 f(z, z', z'') -{ 5 }-> div(f(z, s'', z''), z'') :|: s'' >= 0, s'' <= z' - 1, z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 2 }-> div(f(z, 0, z''), z'') :|: z'' >= 0, z >= 0, z' = 1 + 0 minus(z, z') -{ 3 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 Function symbols to be analyzed: {f} Previous analysis results are: minus: runtime: O(n^1) [3 + z'], size: O(n^1) [z] div: runtime: O(n^2) [1 + 9*z + z*z'], size: O(n^1) [z] ---------------------------------------- (29) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 div(z, z') -{ 3 }-> 1 + s1 :|: s1 >= 0, s1 <= 0, z' - 1 >= 0, z = 1 + (z' - 1) div(z, z') -{ 4 + 9*s' + s'*z' + z' }-> 1 + s2 :|: s2 >= 0, s2 <= s', s' >= 0, s' <= z - 2, z - 2 >= 0, z' - 2 >= 0 div(z, z') -{ 3 }-> 1 + s3 :|: s3 >= 0, s3 <= 0, z = 1 + 0, z' - 1 >= 0 div(z, z') -{ -7 + 10*z }-> 1 + s4 :|: s4 >= 0, s4 <= z - 1, z - 1 >= 0, z' = 1 + 0 f(z, z', z'') -{ 1 }-> z :|: z'' >= 0, z >= 0, z' = 0 f(z, z', z'') -{ 5 }-> div(f(z, s'', z''), z'') :|: s'' >= 0, s'' <= z' - 1, z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 2 }-> div(f(z, 0, z''), z'') :|: z'' >= 0, z >= 0, z' = 1 + 0 minus(z, z') -{ 3 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 Function symbols to be analyzed: {f} Previous analysis results are: minus: runtime: O(n^1) [3 + z'], size: O(n^1) [z] div: runtime: O(n^2) [1 + 9*z + z*z'], size: O(n^1) [z] ---------------------------------------- (31) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: f after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 div(z, z') -{ 3 }-> 1 + s1 :|: s1 >= 0, s1 <= 0, z' - 1 >= 0, z = 1 + (z' - 1) div(z, z') -{ 4 + 9*s' + s'*z' + z' }-> 1 + s2 :|: s2 >= 0, s2 <= s', s' >= 0, s' <= z - 2, z - 2 >= 0, z' - 2 >= 0 div(z, z') -{ 3 }-> 1 + s3 :|: s3 >= 0, s3 <= 0, z = 1 + 0, z' - 1 >= 0 div(z, z') -{ -7 + 10*z }-> 1 + s4 :|: s4 >= 0, s4 <= z - 1, z - 1 >= 0, z' = 1 + 0 f(z, z', z'') -{ 1 }-> z :|: z'' >= 0, z >= 0, z' = 0 f(z, z', z'') -{ 5 }-> div(f(z, s'', z''), z'') :|: s'' >= 0, s'' <= z' - 1, z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 2 }-> div(f(z, 0, z''), z'') :|: z'' >= 0, z >= 0, z' = 1 + 0 minus(z, z') -{ 3 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 Function symbols to be analyzed: {f} Previous analysis results are: minus: runtime: O(n^1) [3 + z'], size: O(n^1) [z] div: runtime: O(n^2) [1 + 9*z + z*z'], size: O(n^1) [z] f: runtime: ?, size: O(n^1) [z] ---------------------------------------- (33) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: f after applying outer abstraction to obtain an ITS, resulting in: O(n^3) with polynomial bound: 1 + 18*z*z' + 2*z*z'*z'' + 9*z' ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 div(z, z') -{ 3 }-> 1 + s1 :|: s1 >= 0, s1 <= 0, z' - 1 >= 0, z = 1 + (z' - 1) div(z, z') -{ 4 + 9*s' + s'*z' + z' }-> 1 + s2 :|: s2 >= 0, s2 <= s', s' >= 0, s' <= z - 2, z - 2 >= 0, z' - 2 >= 0 div(z, z') -{ 3 }-> 1 + s3 :|: s3 >= 0, s3 <= 0, z = 1 + 0, z' - 1 >= 0 div(z, z') -{ -7 + 10*z }-> 1 + s4 :|: s4 >= 0, s4 <= z - 1, z - 1 >= 0, z' = 1 + 0 f(z, z', z'') -{ 1 }-> z :|: z'' >= 0, z >= 0, z' = 0 f(z, z', z'') -{ 5 }-> div(f(z, s'', z''), z'') :|: s'' >= 0, s'' <= z' - 1, z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 2 }-> div(f(z, 0, z''), z'') :|: z'' >= 0, z >= 0, z' = 1 + 0 minus(z, z') -{ 3 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 Function symbols to be analyzed: Previous analysis results are: minus: runtime: O(n^1) [3 + z'], size: O(n^1) [z] div: runtime: O(n^2) [1 + 9*z + z*z'], size: O(n^1) [z] f: runtime: O(n^3) [1 + 18*z*z' + 2*z*z'*z'' + 9*z'], size: O(n^1) [z] ---------------------------------------- (35) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (36) BOUNDS(1, n^3) ---------------------------------------- (37) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (38) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: minus(x, x) -> 0' minus(s(x), s(y)) -> minus(x, y) minus(0', x) -> 0' minus(x, 0') -> x div(s(x), s(y)) -> s(div(minus(x, y), s(y))) div(0', s(y)) -> 0' f(x, 0', b) -> x f(x, s(y), b) -> div(f(x, minus(s(y), s(0')), b), b) S is empty. Rewrite Strategy: FULL ---------------------------------------- (39) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (40) Obligation: TRS: Rules: minus(x, x) -> 0' minus(s(x), s(y)) -> minus(x, y) minus(0', x) -> 0' minus(x, 0') -> x div(s(x), s(y)) -> s(div(minus(x, y), s(y))) div(0', s(y)) -> 0' f(x, 0', b) -> x f(x, s(y), b) -> div(f(x, minus(s(y), s(0')), b), b) Types: minus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s div :: 0':s -> 0':s -> 0':s f :: 0':s -> 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s ---------------------------------------- (41) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: minus, div, f They will be analysed ascendingly in the following order: minus < div minus < f div < f ---------------------------------------- (42) Obligation: TRS: Rules: minus(x, x) -> 0' minus(s(x), s(y)) -> minus(x, y) minus(0', x) -> 0' minus(x, 0') -> x div(s(x), s(y)) -> s(div(minus(x, y), s(y))) div(0', s(y)) -> 0' f(x, 0', b) -> x f(x, s(y), b) -> div(f(x, minus(s(y), s(0')), b), b) Types: minus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s div :: 0':s -> 0':s -> 0':s f :: 0':s -> 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: minus, div, f They will be analysed ascendingly in the following order: minus < div minus < f div < f ---------------------------------------- (43) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) -> gen_0':s2_0(0), rt in Omega(1 + n4_0) Induction Base: minus(gen_0':s2_0(0), gen_0':s2_0(0)) ->_R^Omega(1) 0' Induction Step: minus(gen_0':s2_0(+(n4_0, 1)), gen_0':s2_0(+(n4_0, 1))) ->_R^Omega(1) minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) ->_IH gen_0':s2_0(0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (44) Complex Obligation (BEST) ---------------------------------------- (45) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: minus(x, x) -> 0' minus(s(x), s(y)) -> minus(x, y) minus(0', x) -> 0' minus(x, 0') -> x div(s(x), s(y)) -> s(div(minus(x, y), s(y))) div(0', s(y)) -> 0' f(x, 0', b) -> x f(x, s(y), b) -> div(f(x, minus(s(y), s(0')), b), b) Types: minus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s div :: 0':s -> 0':s -> 0':s f :: 0':s -> 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: minus, div, f They will be analysed ascendingly in the following order: minus < div minus < f div < f ---------------------------------------- (46) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (47) BOUNDS(n^1, INF) ---------------------------------------- (48) Obligation: TRS: Rules: minus(x, x) -> 0' minus(s(x), s(y)) -> minus(x, y) minus(0', x) -> 0' minus(x, 0') -> x div(s(x), s(y)) -> s(div(minus(x, y), s(y))) div(0', s(y)) -> 0' f(x, 0', b) -> x f(x, s(y), b) -> div(f(x, minus(s(y), s(0')), b), b) Types: minus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s div :: 0':s -> 0':s -> 0':s f :: 0':s -> 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Lemmas: minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) -> gen_0':s2_0(0), rt in Omega(1 + n4_0) Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: div, f They will be analysed ascendingly in the following order: div < f