/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 293 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 55 ms] (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 20 ms] (16) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) zero(0) -> true zero(s(x)) -> false id(0) -> 0 id(s(x)) -> s(id(x)) minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) mod(x, y) -> if_mod(zero(x), zero(y), le(y, x), id(x), id(y)) if_mod(true, b1, b2, x, y) -> 0 if_mod(false, b1, b2, x, y) -> if2(b1, b2, x, y) if2(true, b2, x, y) -> 0 if2(false, b2, x, y) -> if3(b2, x, y) if3(true, x, y) -> mod(minus(x, y), s(y)) if3(false, x, y) -> x S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) zero(0') -> true zero(s(x)) -> false id(0') -> 0' id(s(x)) -> s(id(x)) minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) mod(x, y) -> if_mod(zero(x), zero(y), le(y, x), id(x), id(y)) if_mod(true, b1, b2, x, y) -> 0' if_mod(false, b1, b2, x, y) -> if2(b1, b2, x, y) if2(true, b2, x, y) -> 0' if2(false, b2, x, y) -> if3(b2, x, y) if3(true, x, y) -> mod(minus(x, y), s(y)) if3(false, x, y) -> x S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) zero(0') -> true zero(s(x)) -> false id(0') -> 0' id(s(x)) -> s(id(x)) minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) mod(x, y) -> if_mod(zero(x), zero(y), le(y, x), id(x), id(y)) if_mod(true, b1, b2, x, y) -> 0' if_mod(false, b1, b2, x, y) -> if2(b1, b2, x, y) if2(true, b2, x, y) -> 0' if2(false, b2, x, y) -> if3(b2, x, y) if3(true, x, y) -> mod(minus(x, y), s(y)) if3(false, x, y) -> x Types: le :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false zero :: 0':s -> true:false id :: 0':s -> 0':s minus :: 0':s -> 0':s -> 0':s mod :: 0':s -> 0':s -> 0':s if_mod :: true:false -> true:false -> true:false -> 0':s -> 0':s -> 0':s if2 :: true:false -> true:false -> 0':s -> 0':s -> 0':s if3 :: true:false -> 0':s -> 0':s -> 0':s hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: le, id, minus, mod They will be analysed ascendingly in the following order: le < mod id < mod minus < mod ---------------------------------------- (6) Obligation: TRS: Rules: le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) zero(0') -> true zero(s(x)) -> false id(0') -> 0' id(s(x)) -> s(id(x)) minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) mod(x, y) -> if_mod(zero(x), zero(y), le(y, x), id(x), id(y)) if_mod(true, b1, b2, x, y) -> 0' if_mod(false, b1, b2, x, y) -> if2(b1, b2, x, y) if2(true, b2, x, y) -> 0' if2(false, b2, x, y) -> if3(b2, x, y) if3(true, x, y) -> mod(minus(x, y), s(y)) if3(false, x, y) -> x Types: le :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false zero :: 0':s -> true:false id :: 0':s -> 0':s minus :: 0':s -> 0':s -> 0':s mod :: 0':s -> 0':s -> 0':s if_mod :: true:false -> true:false -> true:false -> 0':s -> 0':s -> 0':s if2 :: true:false -> true:false -> 0':s -> 0':s -> 0':s if3 :: true:false -> 0':s -> 0':s -> 0':s hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: le, id, minus, mod They will be analysed ascendingly in the following order: le < mod id < mod minus < mod ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> true, rt in Omega(1 + n5_0) Induction Base: le(gen_0':s3_0(0), gen_0':s3_0(0)) ->_R^Omega(1) true Induction Step: le(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(n5_0, 1))) ->_R^Omega(1) le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) ->_IH true We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) zero(0') -> true zero(s(x)) -> false id(0') -> 0' id(s(x)) -> s(id(x)) minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) mod(x, y) -> if_mod(zero(x), zero(y), le(y, x), id(x), id(y)) if_mod(true, b1, b2, x, y) -> 0' if_mod(false, b1, b2, x, y) -> if2(b1, b2, x, y) if2(true, b2, x, y) -> 0' if2(false, b2, x, y) -> if3(b2, x, y) if3(true, x, y) -> mod(minus(x, y), s(y)) if3(false, x, y) -> x Types: le :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false zero :: 0':s -> true:false id :: 0':s -> 0':s minus :: 0':s -> 0':s -> 0':s mod :: 0':s -> 0':s -> 0':s if_mod :: true:false -> true:false -> true:false -> 0':s -> 0':s -> 0':s if2 :: true:false -> true:false -> 0':s -> 0':s -> 0':s if3 :: true:false -> 0':s -> 0':s -> 0':s hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: le, id, minus, mod They will be analysed ascendingly in the following order: le < mod id < mod minus < mod ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) zero(0') -> true zero(s(x)) -> false id(0') -> 0' id(s(x)) -> s(id(x)) minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) mod(x, y) -> if_mod(zero(x), zero(y), le(y, x), id(x), id(y)) if_mod(true, b1, b2, x, y) -> 0' if_mod(false, b1, b2, x, y) -> if2(b1, b2, x, y) if2(true, b2, x, y) -> 0' if2(false, b2, x, y) -> if3(b2, x, y) if3(true, x, y) -> mod(minus(x, y), s(y)) if3(false, x, y) -> x Types: le :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false zero :: 0':s -> true:false id :: 0':s -> 0':s minus :: 0':s -> 0':s -> 0':s mod :: 0':s -> 0':s -> 0':s if_mod :: true:false -> true:false -> true:false -> 0':s -> 0':s -> 0':s if2 :: true:false -> true:false -> 0':s -> 0':s -> 0':s if3 :: true:false -> 0':s -> 0':s -> 0':s hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s Lemmas: le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> true, rt in Omega(1 + n5_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: id, minus, mod They will be analysed ascendingly in the following order: id < mod minus < mod ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: id(gen_0':s3_0(n288_0)) -> gen_0':s3_0(n288_0), rt in Omega(1 + n288_0) Induction Base: id(gen_0':s3_0(0)) ->_R^Omega(1) 0' Induction Step: id(gen_0':s3_0(+(n288_0, 1))) ->_R^Omega(1) s(id(gen_0':s3_0(n288_0))) ->_IH s(gen_0':s3_0(c289_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: TRS: Rules: le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) zero(0') -> true zero(s(x)) -> false id(0') -> 0' id(s(x)) -> s(id(x)) minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) mod(x, y) -> if_mod(zero(x), zero(y), le(y, x), id(x), id(y)) if_mod(true, b1, b2, x, y) -> 0' if_mod(false, b1, b2, x, y) -> if2(b1, b2, x, y) if2(true, b2, x, y) -> 0' if2(false, b2, x, y) -> if3(b2, x, y) if3(true, x, y) -> mod(minus(x, y), s(y)) if3(false, x, y) -> x Types: le :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false zero :: 0':s -> true:false id :: 0':s -> 0':s minus :: 0':s -> 0':s -> 0':s mod :: 0':s -> 0':s -> 0':s if_mod :: true:false -> true:false -> true:false -> 0':s -> 0':s -> 0':s if2 :: true:false -> true:false -> 0':s -> 0':s -> 0':s if3 :: true:false -> 0':s -> 0':s -> 0':s hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s Lemmas: le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> true, rt in Omega(1 + n5_0) id(gen_0':s3_0(n288_0)) -> gen_0':s3_0(n288_0), rt in Omega(1 + n288_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: minus, mod They will be analysed ascendingly in the following order: minus < mod ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: minus(gen_0':s3_0(n502_0), gen_0':s3_0(n502_0)) -> gen_0':s3_0(0), rt in Omega(1 + n502_0) Induction Base: minus(gen_0':s3_0(0), gen_0':s3_0(0)) ->_R^Omega(1) gen_0':s3_0(0) Induction Step: minus(gen_0':s3_0(+(n502_0, 1)), gen_0':s3_0(+(n502_0, 1))) ->_R^Omega(1) minus(gen_0':s3_0(n502_0), gen_0':s3_0(n502_0)) ->_IH gen_0':s3_0(0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (16) Obligation: TRS: Rules: le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) zero(0') -> true zero(s(x)) -> false id(0') -> 0' id(s(x)) -> s(id(x)) minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) mod(x, y) -> if_mod(zero(x), zero(y), le(y, x), id(x), id(y)) if_mod(true, b1, b2, x, y) -> 0' if_mod(false, b1, b2, x, y) -> if2(b1, b2, x, y) if2(true, b2, x, y) -> 0' if2(false, b2, x, y) -> if3(b2, x, y) if3(true, x, y) -> mod(minus(x, y), s(y)) if3(false, x, y) -> x Types: le :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false zero :: 0':s -> true:false id :: 0':s -> 0':s minus :: 0':s -> 0':s -> 0':s mod :: 0':s -> 0':s -> 0':s if_mod :: true:false -> true:false -> true:false -> 0':s -> 0':s -> 0':s if2 :: true:false -> true:false -> 0':s -> 0':s -> 0':s if3 :: true:false -> 0':s -> 0':s -> 0':s hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s Lemmas: le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> true, rt in Omega(1 + n5_0) id(gen_0':s3_0(n288_0)) -> gen_0':s3_0(n288_0), rt in Omega(1 + n288_0) minus(gen_0':s3_0(n502_0), gen_0':s3_0(n502_0)) -> gen_0':s3_0(0), rt in Omega(1 + n502_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: mod