/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 251 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 86 ms] (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 98 ms] (16) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: gt(0, y) -> false gt(s(x), 0) -> true gt(s(x), s(y)) -> gt(x, y) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) double(0) -> 0 double(s(x)) -> s(s(double(x))) average(x, y) -> aver(plus(x, y), 0) aver(sum, z) -> if(gt(sum, double(z)), sum, z) if(true, sum, z) -> aver(sum, s(z)) if(false, sum, z) -> z S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: gt(0', y) -> false gt(s(x), 0') -> true gt(s(x), s(y)) -> gt(x, y) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) double(0') -> 0' double(s(x)) -> s(s(double(x))) average(x, y) -> aver(plus(x, y), 0') aver(sum, z) -> if(gt(sum, double(z)), sum, z) if(true, sum, z) -> aver(sum, s(z)) if(false, sum, z) -> z S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: gt(0', y) -> false gt(s(x), 0') -> true gt(s(x), s(y)) -> gt(x, y) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) double(0') -> 0' double(s(x)) -> s(s(double(x))) average(x, y) -> aver(plus(x, y), 0') aver(sum, z) -> if(gt(sum, double(z)), sum, z) if(true, sum, z) -> aver(sum, s(z)) if(false, sum, z) -> z Types: gt :: 0':s -> 0':s -> false:true 0' :: 0':s false :: false:true s :: 0':s -> 0':s true :: false:true plus :: 0':s -> 0':s -> 0':s double :: 0':s -> 0':s average :: 0':s -> 0':s -> 0':s aver :: 0':s -> 0':s -> 0':s if :: false:true -> 0':s -> 0':s -> 0':s hole_false:true1_0 :: false:true hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: gt, plus, double, aver They will be analysed ascendingly in the following order: gt < aver double < aver ---------------------------------------- (6) Obligation: TRS: Rules: gt(0', y) -> false gt(s(x), 0') -> true gt(s(x), s(y)) -> gt(x, y) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) double(0') -> 0' double(s(x)) -> s(s(double(x))) average(x, y) -> aver(plus(x, y), 0') aver(sum, z) -> if(gt(sum, double(z)), sum, z) if(true, sum, z) -> aver(sum, s(z)) if(false, sum, z) -> z Types: gt :: 0':s -> 0':s -> false:true 0' :: 0':s false :: false:true s :: 0':s -> 0':s true :: false:true plus :: 0':s -> 0':s -> 0':s double :: 0':s -> 0':s average :: 0':s -> 0':s -> 0':s aver :: 0':s -> 0':s -> 0':s if :: false:true -> 0':s -> 0':s -> 0':s hole_false:true1_0 :: false:true hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: gt, plus, double, aver They will be analysed ascendingly in the following order: gt < aver double < aver ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: gt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> false, rt in Omega(1 + n5_0) Induction Base: gt(gen_0':s3_0(0), gen_0':s3_0(0)) ->_R^Omega(1) false Induction Step: gt(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(n5_0, 1))) ->_R^Omega(1) gt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) ->_IH false We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: gt(0', y) -> false gt(s(x), 0') -> true gt(s(x), s(y)) -> gt(x, y) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) double(0') -> 0' double(s(x)) -> s(s(double(x))) average(x, y) -> aver(plus(x, y), 0') aver(sum, z) -> if(gt(sum, double(z)), sum, z) if(true, sum, z) -> aver(sum, s(z)) if(false, sum, z) -> z Types: gt :: 0':s -> 0':s -> false:true 0' :: 0':s false :: false:true s :: 0':s -> 0':s true :: false:true plus :: 0':s -> 0':s -> 0':s double :: 0':s -> 0':s average :: 0':s -> 0':s -> 0':s aver :: 0':s -> 0':s -> 0':s if :: false:true -> 0':s -> 0':s -> 0':s hole_false:true1_0 :: false:true hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: gt, plus, double, aver They will be analysed ascendingly in the following order: gt < aver double < aver ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: gt(0', y) -> false gt(s(x), 0') -> true gt(s(x), s(y)) -> gt(x, y) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) double(0') -> 0' double(s(x)) -> s(s(double(x))) average(x, y) -> aver(plus(x, y), 0') aver(sum, z) -> if(gt(sum, double(z)), sum, z) if(true, sum, z) -> aver(sum, s(z)) if(false, sum, z) -> z Types: gt :: 0':s -> 0':s -> false:true 0' :: 0':s false :: false:true s :: 0':s -> 0':s true :: false:true plus :: 0':s -> 0':s -> 0':s double :: 0':s -> 0':s average :: 0':s -> 0':s -> 0':s aver :: 0':s -> 0':s -> 0':s if :: false:true -> 0':s -> 0':s -> 0':s hole_false:true1_0 :: false:true hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s Lemmas: gt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> false, rt in Omega(1 + n5_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: plus, double, aver They will be analysed ascendingly in the following order: double < aver ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: plus(gen_0':s3_0(n258_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n258_0, b)), rt in Omega(1 + n258_0) Induction Base: plus(gen_0':s3_0(0), gen_0':s3_0(b)) ->_R^Omega(1) gen_0':s3_0(b) Induction Step: plus(gen_0':s3_0(+(n258_0, 1)), gen_0':s3_0(b)) ->_R^Omega(1) s(plus(gen_0':s3_0(n258_0), gen_0':s3_0(b))) ->_IH s(gen_0':s3_0(+(b, c259_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: TRS: Rules: gt(0', y) -> false gt(s(x), 0') -> true gt(s(x), s(y)) -> gt(x, y) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) double(0') -> 0' double(s(x)) -> s(s(double(x))) average(x, y) -> aver(plus(x, y), 0') aver(sum, z) -> if(gt(sum, double(z)), sum, z) if(true, sum, z) -> aver(sum, s(z)) if(false, sum, z) -> z Types: gt :: 0':s -> 0':s -> false:true 0' :: 0':s false :: false:true s :: 0':s -> 0':s true :: false:true plus :: 0':s -> 0':s -> 0':s double :: 0':s -> 0':s average :: 0':s -> 0':s -> 0':s aver :: 0':s -> 0':s -> 0':s if :: false:true -> 0':s -> 0':s -> 0':s hole_false:true1_0 :: false:true hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s Lemmas: gt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> false, rt in Omega(1 + n5_0) plus(gen_0':s3_0(n258_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n258_0, b)), rt in Omega(1 + n258_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: double, aver They will be analysed ascendingly in the following order: double < aver ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: double(gen_0':s3_0(n801_0)) -> gen_0':s3_0(*(2, n801_0)), rt in Omega(1 + n801_0) Induction Base: double(gen_0':s3_0(0)) ->_R^Omega(1) 0' Induction Step: double(gen_0':s3_0(+(n801_0, 1))) ->_R^Omega(1) s(s(double(gen_0':s3_0(n801_0)))) ->_IH s(s(gen_0':s3_0(*(2, c802_0)))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (16) Obligation: TRS: Rules: gt(0', y) -> false gt(s(x), 0') -> true gt(s(x), s(y)) -> gt(x, y) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) double(0') -> 0' double(s(x)) -> s(s(double(x))) average(x, y) -> aver(plus(x, y), 0') aver(sum, z) -> if(gt(sum, double(z)), sum, z) if(true, sum, z) -> aver(sum, s(z)) if(false, sum, z) -> z Types: gt :: 0':s -> 0':s -> false:true 0' :: 0':s false :: false:true s :: 0':s -> 0':s true :: false:true plus :: 0':s -> 0':s -> 0':s double :: 0':s -> 0':s average :: 0':s -> 0':s -> 0':s aver :: 0':s -> 0':s -> 0':s if :: false:true -> 0':s -> 0':s -> 0':s hole_false:true1_0 :: false:true hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s Lemmas: gt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> false, rt in Omega(1 + n5_0) plus(gen_0':s3_0(n258_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n258_0, b)), rt in Omega(1 + n258_0) double(gen_0':s3_0(n801_0)) -> gen_0':s3_0(*(2, n801_0)), rt in Omega(1 + n801_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: aver