/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (2) TRS for Loop Detection (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (4) BEST (5) proven lower bound (6) LowerBoundPropagationProof [FINISHED, 0 ms] (7) BOUNDS(n^1, INF) (8) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(and(tt, T)) -> mark(T) active(isNatIList(IL)) -> mark(isNatList(IL)) active(isNat(0)) -> mark(tt) active(isNat(s(N))) -> mark(isNat(N)) active(isNat(length(L))) -> mark(isNatList(L)) active(isNatIList(zeros)) -> mark(tt) active(isNatIList(cons(N, IL))) -> mark(and(isNat(N), isNatIList(IL))) active(isNatList(nil)) -> mark(tt) active(isNatList(cons(N, L))) -> mark(and(isNat(N), isNatList(L))) active(isNatList(take(N, IL))) -> mark(and(isNat(N), isNatIList(IL))) active(zeros) -> mark(cons(0, zeros)) active(take(0, IL)) -> mark(uTake1(isNatIList(IL))) active(uTake1(tt)) -> mark(nil) active(take(s(M), cons(N, IL))) -> mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL)) active(uTake2(tt, M, N, IL)) -> mark(cons(N, take(M, IL))) active(length(cons(N, L))) -> mark(uLength(and(isNat(N), isNatList(L)), L)) active(uLength(tt, L)) -> mark(s(length(L))) active(and(X1, X2)) -> and(active(X1), X2) active(and(X1, X2)) -> and(X1, active(X2)) active(s(X)) -> s(active(X)) active(length(X)) -> length(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(take(X1, X2)) -> take(active(X1), X2) active(take(X1, X2)) -> take(X1, active(X2)) active(uTake1(X)) -> uTake1(active(X)) active(uTake2(X1, X2, X3, X4)) -> uTake2(active(X1), X2, X3, X4) active(uLength(X1, X2)) -> uLength(active(X1), X2) and(mark(X1), X2) -> mark(and(X1, X2)) and(X1, mark(X2)) -> mark(and(X1, X2)) s(mark(X)) -> mark(s(X)) length(mark(X)) -> mark(length(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) take(mark(X1), X2) -> mark(take(X1, X2)) take(X1, mark(X2)) -> mark(take(X1, X2)) uTake1(mark(X)) -> mark(uTake1(X)) uTake2(mark(X1), X2, X3, X4) -> mark(uTake2(X1, X2, X3, X4)) uLength(mark(X1), X2) -> mark(uLength(X1, X2)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(tt) -> ok(tt) proper(isNatIList(X)) -> isNatIList(proper(X)) proper(isNatList(X)) -> isNatList(proper(X)) proper(isNat(X)) -> isNat(proper(X)) proper(0) -> ok(0) proper(s(X)) -> s(proper(X)) proper(length(X)) -> length(proper(X)) proper(zeros) -> ok(zeros) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(nil) -> ok(nil) proper(take(X1, X2)) -> take(proper(X1), proper(X2)) proper(uTake1(X)) -> uTake1(proper(X)) proper(uTake2(X1, X2, X3, X4)) -> uTake2(proper(X1), proper(X2), proper(X3), proper(X4)) proper(uLength(X1, X2)) -> uLength(proper(X1), proper(X2)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) isNatIList(ok(X)) -> ok(isNatIList(X)) isNatList(ok(X)) -> ok(isNatList(X)) isNat(ok(X)) -> ok(isNat(X)) s(ok(X)) -> ok(s(X)) length(ok(X)) -> ok(length(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) take(ok(X1), ok(X2)) -> ok(take(X1, X2)) uTake1(ok(X)) -> ok(uTake1(X)) uTake2(ok(X1), ok(X2), ok(X3), ok(X4)) -> ok(uTake2(X1, X2, X3, X4)) uLength(ok(X1), ok(X2)) -> ok(uLength(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (2) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(and(tt, T)) -> mark(T) active(isNatIList(IL)) -> mark(isNatList(IL)) active(isNat(0)) -> mark(tt) active(isNat(s(N))) -> mark(isNat(N)) active(isNat(length(L))) -> mark(isNatList(L)) active(isNatIList(zeros)) -> mark(tt) active(isNatIList(cons(N, IL))) -> mark(and(isNat(N), isNatIList(IL))) active(isNatList(nil)) -> mark(tt) active(isNatList(cons(N, L))) -> mark(and(isNat(N), isNatList(L))) active(isNatList(take(N, IL))) -> mark(and(isNat(N), isNatIList(IL))) active(zeros) -> mark(cons(0, zeros)) active(take(0, IL)) -> mark(uTake1(isNatIList(IL))) active(uTake1(tt)) -> mark(nil) active(take(s(M), cons(N, IL))) -> mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL)) active(uTake2(tt, M, N, IL)) -> mark(cons(N, take(M, IL))) active(length(cons(N, L))) -> mark(uLength(and(isNat(N), isNatList(L)), L)) active(uLength(tt, L)) -> mark(s(length(L))) active(and(X1, X2)) -> and(active(X1), X2) active(and(X1, X2)) -> and(X1, active(X2)) active(s(X)) -> s(active(X)) active(length(X)) -> length(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(take(X1, X2)) -> take(active(X1), X2) active(take(X1, X2)) -> take(X1, active(X2)) active(uTake1(X)) -> uTake1(active(X)) active(uTake2(X1, X2, X3, X4)) -> uTake2(active(X1), X2, X3, X4) active(uLength(X1, X2)) -> uLength(active(X1), X2) and(mark(X1), X2) -> mark(and(X1, X2)) and(X1, mark(X2)) -> mark(and(X1, X2)) s(mark(X)) -> mark(s(X)) length(mark(X)) -> mark(length(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) take(mark(X1), X2) -> mark(take(X1, X2)) take(X1, mark(X2)) -> mark(take(X1, X2)) uTake1(mark(X)) -> mark(uTake1(X)) uTake2(mark(X1), X2, X3, X4) -> mark(uTake2(X1, X2, X3, X4)) uLength(mark(X1), X2) -> mark(uLength(X1, X2)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(tt) -> ok(tt) proper(isNatIList(X)) -> isNatIList(proper(X)) proper(isNatList(X)) -> isNatList(proper(X)) proper(isNat(X)) -> isNat(proper(X)) proper(0) -> ok(0) proper(s(X)) -> s(proper(X)) proper(length(X)) -> length(proper(X)) proper(zeros) -> ok(zeros) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(nil) -> ok(nil) proper(take(X1, X2)) -> take(proper(X1), proper(X2)) proper(uTake1(X)) -> uTake1(proper(X)) proper(uTake2(X1, X2, X3, X4)) -> uTake2(proper(X1), proper(X2), proper(X3), proper(X4)) proper(uLength(X1, X2)) -> uLength(proper(X1), proper(X2)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) isNatIList(ok(X)) -> ok(isNatIList(X)) isNatList(ok(X)) -> ok(isNatList(X)) isNat(ok(X)) -> ok(isNat(X)) s(ok(X)) -> ok(s(X)) length(ok(X)) -> ok(length(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) take(ok(X1), ok(X2)) -> ok(take(X1, X2)) uTake1(ok(X)) -> ok(uTake1(X)) uTake2(ok(X1), ok(X2), ok(X3), ok(X4)) -> ok(uTake2(X1, X2, X3, X4)) uLength(ok(X1), ok(X2)) -> ok(uLength(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence uTake2(mark(X1), X2, X3, X4) ->^+ mark(uTake2(X1, X2, X3, X4)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [X1 / mark(X1)]. The result substitution is [ ]. ---------------------------------------- (4) Complex Obligation (BEST) ---------------------------------------- (5) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(and(tt, T)) -> mark(T) active(isNatIList(IL)) -> mark(isNatList(IL)) active(isNat(0)) -> mark(tt) active(isNat(s(N))) -> mark(isNat(N)) active(isNat(length(L))) -> mark(isNatList(L)) active(isNatIList(zeros)) -> mark(tt) active(isNatIList(cons(N, IL))) -> mark(and(isNat(N), isNatIList(IL))) active(isNatList(nil)) -> mark(tt) active(isNatList(cons(N, L))) -> mark(and(isNat(N), isNatList(L))) active(isNatList(take(N, IL))) -> mark(and(isNat(N), isNatIList(IL))) active(zeros) -> mark(cons(0, zeros)) active(take(0, IL)) -> mark(uTake1(isNatIList(IL))) active(uTake1(tt)) -> mark(nil) active(take(s(M), cons(N, IL))) -> mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL)) active(uTake2(tt, M, N, IL)) -> mark(cons(N, take(M, IL))) active(length(cons(N, L))) -> mark(uLength(and(isNat(N), isNatList(L)), L)) active(uLength(tt, L)) -> mark(s(length(L))) active(and(X1, X2)) -> and(active(X1), X2) active(and(X1, X2)) -> and(X1, active(X2)) active(s(X)) -> s(active(X)) active(length(X)) -> length(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(take(X1, X2)) -> take(active(X1), X2) active(take(X1, X2)) -> take(X1, active(X2)) active(uTake1(X)) -> uTake1(active(X)) active(uTake2(X1, X2, X3, X4)) -> uTake2(active(X1), X2, X3, X4) active(uLength(X1, X2)) -> uLength(active(X1), X2) and(mark(X1), X2) -> mark(and(X1, X2)) and(X1, mark(X2)) -> mark(and(X1, X2)) s(mark(X)) -> mark(s(X)) length(mark(X)) -> mark(length(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) take(mark(X1), X2) -> mark(take(X1, X2)) take(X1, mark(X2)) -> mark(take(X1, X2)) uTake1(mark(X)) -> mark(uTake1(X)) uTake2(mark(X1), X2, X3, X4) -> mark(uTake2(X1, X2, X3, X4)) uLength(mark(X1), X2) -> mark(uLength(X1, X2)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(tt) -> ok(tt) proper(isNatIList(X)) -> isNatIList(proper(X)) proper(isNatList(X)) -> isNatList(proper(X)) proper(isNat(X)) -> isNat(proper(X)) proper(0) -> ok(0) proper(s(X)) -> s(proper(X)) proper(length(X)) -> length(proper(X)) proper(zeros) -> ok(zeros) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(nil) -> ok(nil) proper(take(X1, X2)) -> take(proper(X1), proper(X2)) proper(uTake1(X)) -> uTake1(proper(X)) proper(uTake2(X1, X2, X3, X4)) -> uTake2(proper(X1), proper(X2), proper(X3), proper(X4)) proper(uLength(X1, X2)) -> uLength(proper(X1), proper(X2)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) isNatIList(ok(X)) -> ok(isNatIList(X)) isNatList(ok(X)) -> ok(isNatList(X)) isNat(ok(X)) -> ok(isNat(X)) s(ok(X)) -> ok(s(X)) length(ok(X)) -> ok(length(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) take(ok(X1), ok(X2)) -> ok(take(X1, X2)) uTake1(ok(X)) -> ok(uTake1(X)) uTake2(ok(X1), ok(X2), ok(X3), ok(X4)) -> ok(uTake2(X1, X2, X3, X4)) uLength(ok(X1), ok(X2)) -> ok(uLength(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (6) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (7) BOUNDS(n^1, INF) ---------------------------------------- (8) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(and(tt, T)) -> mark(T) active(isNatIList(IL)) -> mark(isNatList(IL)) active(isNat(0)) -> mark(tt) active(isNat(s(N))) -> mark(isNat(N)) active(isNat(length(L))) -> mark(isNatList(L)) active(isNatIList(zeros)) -> mark(tt) active(isNatIList(cons(N, IL))) -> mark(and(isNat(N), isNatIList(IL))) active(isNatList(nil)) -> mark(tt) active(isNatList(cons(N, L))) -> mark(and(isNat(N), isNatList(L))) active(isNatList(take(N, IL))) -> mark(and(isNat(N), isNatIList(IL))) active(zeros) -> mark(cons(0, zeros)) active(take(0, IL)) -> mark(uTake1(isNatIList(IL))) active(uTake1(tt)) -> mark(nil) active(take(s(M), cons(N, IL))) -> mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL)) active(uTake2(tt, M, N, IL)) -> mark(cons(N, take(M, IL))) active(length(cons(N, L))) -> mark(uLength(and(isNat(N), isNatList(L)), L)) active(uLength(tt, L)) -> mark(s(length(L))) active(and(X1, X2)) -> and(active(X1), X2) active(and(X1, X2)) -> and(X1, active(X2)) active(s(X)) -> s(active(X)) active(length(X)) -> length(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(take(X1, X2)) -> take(active(X1), X2) active(take(X1, X2)) -> take(X1, active(X2)) active(uTake1(X)) -> uTake1(active(X)) active(uTake2(X1, X2, X3, X4)) -> uTake2(active(X1), X2, X3, X4) active(uLength(X1, X2)) -> uLength(active(X1), X2) and(mark(X1), X2) -> mark(and(X1, X2)) and(X1, mark(X2)) -> mark(and(X1, X2)) s(mark(X)) -> mark(s(X)) length(mark(X)) -> mark(length(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) take(mark(X1), X2) -> mark(take(X1, X2)) take(X1, mark(X2)) -> mark(take(X1, X2)) uTake1(mark(X)) -> mark(uTake1(X)) uTake2(mark(X1), X2, X3, X4) -> mark(uTake2(X1, X2, X3, X4)) uLength(mark(X1), X2) -> mark(uLength(X1, X2)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(tt) -> ok(tt) proper(isNatIList(X)) -> isNatIList(proper(X)) proper(isNatList(X)) -> isNatList(proper(X)) proper(isNat(X)) -> isNat(proper(X)) proper(0) -> ok(0) proper(s(X)) -> s(proper(X)) proper(length(X)) -> length(proper(X)) proper(zeros) -> ok(zeros) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(nil) -> ok(nil) proper(take(X1, X2)) -> take(proper(X1), proper(X2)) proper(uTake1(X)) -> uTake1(proper(X)) proper(uTake2(X1, X2, X3, X4)) -> uTake2(proper(X1), proper(X2), proper(X3), proper(X4)) proper(uLength(X1, X2)) -> uLength(proper(X1), proper(X2)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) isNatIList(ok(X)) -> ok(isNatIList(X)) isNatList(ok(X)) -> ok(isNatList(X)) isNat(ok(X)) -> ok(isNat(X)) s(ok(X)) -> ok(s(X)) length(ok(X)) -> ok(length(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) take(ok(X1), ok(X2)) -> ok(take(X1, X2)) uTake1(ok(X)) -> ok(uTake1(X)) uTake2(ok(X1), ok(X2), ok(X3), ok(X4)) -> ok(uTake2(X1, X2, X3, X4)) uLength(ok(X1), ok(X2)) -> ok(uLength(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL