/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) SlicingProof [LOWER BOUND(ID), 0 ms] (4) CpxTRS (5) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (6) typed CpxTrs (7) OrderProof [LOWER BOUND(ID), 0 ms] (8) typed CpxTrs (9) RewriteLemmaProof [LOWER BOUND(ID), 286 ms] (10) BEST (11) proven lower bound (12) LowerBoundPropagationProof [FINISHED, 0 ms] (13) BOUNDS(n^1, INF) (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 64 ms] (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 51 ms] (18) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: ge(x, 0) -> true ge(0, s(y)) -> false ge(s(x), s(y)) -> ge(x, y) rev(x) -> if(x, eq(0, length(x)), nil, 0, length(x)) if(x, true, z, c, l) -> z if(x, false, z, c, l) -> help(s(c), l, x, z) help(c, l, cons(x, y), z) -> if(append(y, cons(x, nil)), ge(c, l), cons(x, z), c, l) append(nil, y) -> y append(cons(x, y), z) -> cons(x, append(y, z)) length(nil) -> 0 length(cons(x, y)) -> s(length(y)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: ge(x, 0') -> true ge(0', s(y)) -> false ge(s(x), s(y)) -> ge(x, y) rev(x) -> if(x, eq(0', length(x)), nil, 0', length(x)) if(x, true, z, c, l) -> z if(x, false, z, c, l) -> help(s(c), l, x, z) help(c, l, cons(x, y), z) -> if(append(y, cons(x, nil)), ge(c, l), cons(x, z), c, l) append(nil, y) -> y append(cons(x, y), z) -> cons(x, append(y, z)) length(nil) -> 0' length(cons(x, y)) -> s(length(y)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) SlicingProof (LOWER BOUND(ID)) Sliced the following arguments: eq/0 cons/0 ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: ge(x, 0') -> true ge(0', s(y)) -> false ge(s(x), s(y)) -> ge(x, y) rev(x) -> if(x, eq(length(x)), nil, 0', length(x)) if(x, true, z, c, l) -> z if(x, false, z, c, l) -> help(s(c), l, x, z) help(c, l, cons(y), z) -> if(append(y, cons(nil)), ge(c, l), cons(z), c, l) append(nil, y) -> y append(cons(y), z) -> cons(append(y, z)) length(nil) -> 0' length(cons(y)) -> s(length(y)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (5) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (6) Obligation: TRS: Rules: ge(x, 0') -> true ge(0', s(y)) -> false ge(s(x), s(y)) -> ge(x, y) rev(x) -> if(x, eq(length(x)), nil, 0', length(x)) if(x, true, z, c, l) -> z if(x, false, z, c, l) -> help(s(c), l, x, z) help(c, l, cons(y), z) -> if(append(y, cons(nil)), ge(c, l), cons(z), c, l) append(nil, y) -> y append(cons(y), z) -> cons(append(y, z)) length(nil) -> 0' length(cons(y)) -> s(length(y)) Types: ge :: 0':s -> 0':s -> true:false:eq 0' :: 0':s true :: true:false:eq s :: 0':s -> 0':s false :: true:false:eq rev :: nil:cons -> nil:cons if :: nil:cons -> true:false:eq -> nil:cons -> 0':s -> 0':s -> nil:cons eq :: 0':s -> true:false:eq length :: nil:cons -> 0':s nil :: nil:cons help :: 0':s -> 0':s -> nil:cons -> nil:cons -> nil:cons cons :: nil:cons -> nil:cons append :: nil:cons -> nil:cons -> nil:cons hole_true:false:eq1_0 :: true:false:eq hole_0':s2_0 :: 0':s hole_nil:cons3_0 :: nil:cons gen_0':s4_0 :: Nat -> 0':s gen_nil:cons5_0 :: Nat -> nil:cons ---------------------------------------- (7) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: ge, length, help, append They will be analysed ascendingly in the following order: ge < help append < help ---------------------------------------- (8) Obligation: TRS: Rules: ge(x, 0') -> true ge(0', s(y)) -> false ge(s(x), s(y)) -> ge(x, y) rev(x) -> if(x, eq(length(x)), nil, 0', length(x)) if(x, true, z, c, l) -> z if(x, false, z, c, l) -> help(s(c), l, x, z) help(c, l, cons(y), z) -> if(append(y, cons(nil)), ge(c, l), cons(z), c, l) append(nil, y) -> y append(cons(y), z) -> cons(append(y, z)) length(nil) -> 0' length(cons(y)) -> s(length(y)) Types: ge :: 0':s -> 0':s -> true:false:eq 0' :: 0':s true :: true:false:eq s :: 0':s -> 0':s false :: true:false:eq rev :: nil:cons -> nil:cons if :: nil:cons -> true:false:eq -> nil:cons -> 0':s -> 0':s -> nil:cons eq :: 0':s -> true:false:eq length :: nil:cons -> 0':s nil :: nil:cons help :: 0':s -> 0':s -> nil:cons -> nil:cons -> nil:cons cons :: nil:cons -> nil:cons append :: nil:cons -> nil:cons -> nil:cons hole_true:false:eq1_0 :: true:false:eq hole_0':s2_0 :: 0':s hole_nil:cons3_0 :: nil:cons gen_0':s4_0 :: Nat -> 0':s gen_nil:cons5_0 :: Nat -> nil:cons Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) gen_nil:cons5_0(0) <=> nil gen_nil:cons5_0(+(x, 1)) <=> cons(gen_nil:cons5_0(x)) The following defined symbols remain to be analysed: ge, length, help, append They will be analysed ascendingly in the following order: ge < help append < help ---------------------------------------- (9) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: ge(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) -> true, rt in Omega(1 + n7_0) Induction Base: ge(gen_0':s4_0(0), gen_0':s4_0(0)) ->_R^Omega(1) true Induction Step: ge(gen_0':s4_0(+(n7_0, 1)), gen_0':s4_0(+(n7_0, 1))) ->_R^Omega(1) ge(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) ->_IH true We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (10) Complex Obligation (BEST) ---------------------------------------- (11) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: ge(x, 0') -> true ge(0', s(y)) -> false ge(s(x), s(y)) -> ge(x, y) rev(x) -> if(x, eq(length(x)), nil, 0', length(x)) if(x, true, z, c, l) -> z if(x, false, z, c, l) -> help(s(c), l, x, z) help(c, l, cons(y), z) -> if(append(y, cons(nil)), ge(c, l), cons(z), c, l) append(nil, y) -> y append(cons(y), z) -> cons(append(y, z)) length(nil) -> 0' length(cons(y)) -> s(length(y)) Types: ge :: 0':s -> 0':s -> true:false:eq 0' :: 0':s true :: true:false:eq s :: 0':s -> 0':s false :: true:false:eq rev :: nil:cons -> nil:cons if :: nil:cons -> true:false:eq -> nil:cons -> 0':s -> 0':s -> nil:cons eq :: 0':s -> true:false:eq length :: nil:cons -> 0':s nil :: nil:cons help :: 0':s -> 0':s -> nil:cons -> nil:cons -> nil:cons cons :: nil:cons -> nil:cons append :: nil:cons -> nil:cons -> nil:cons hole_true:false:eq1_0 :: true:false:eq hole_0':s2_0 :: 0':s hole_nil:cons3_0 :: nil:cons gen_0':s4_0 :: Nat -> 0':s gen_nil:cons5_0 :: Nat -> nil:cons Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) gen_nil:cons5_0(0) <=> nil gen_nil:cons5_0(+(x, 1)) <=> cons(gen_nil:cons5_0(x)) The following defined symbols remain to be analysed: ge, length, help, append They will be analysed ascendingly in the following order: ge < help append < help ---------------------------------------- (12) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (13) BOUNDS(n^1, INF) ---------------------------------------- (14) Obligation: TRS: Rules: ge(x, 0') -> true ge(0', s(y)) -> false ge(s(x), s(y)) -> ge(x, y) rev(x) -> if(x, eq(length(x)), nil, 0', length(x)) if(x, true, z, c, l) -> z if(x, false, z, c, l) -> help(s(c), l, x, z) help(c, l, cons(y), z) -> if(append(y, cons(nil)), ge(c, l), cons(z), c, l) append(nil, y) -> y append(cons(y), z) -> cons(append(y, z)) length(nil) -> 0' length(cons(y)) -> s(length(y)) Types: ge :: 0':s -> 0':s -> true:false:eq 0' :: 0':s true :: true:false:eq s :: 0':s -> 0':s false :: true:false:eq rev :: nil:cons -> nil:cons if :: nil:cons -> true:false:eq -> nil:cons -> 0':s -> 0':s -> nil:cons eq :: 0':s -> true:false:eq length :: nil:cons -> 0':s nil :: nil:cons help :: 0':s -> 0':s -> nil:cons -> nil:cons -> nil:cons cons :: nil:cons -> nil:cons append :: nil:cons -> nil:cons -> nil:cons hole_true:false:eq1_0 :: true:false:eq hole_0':s2_0 :: 0':s hole_nil:cons3_0 :: nil:cons gen_0':s4_0 :: Nat -> 0':s gen_nil:cons5_0 :: Nat -> nil:cons Lemmas: ge(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) -> true, rt in Omega(1 + n7_0) Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) gen_nil:cons5_0(0) <=> nil gen_nil:cons5_0(+(x, 1)) <=> cons(gen_nil:cons5_0(x)) The following defined symbols remain to be analysed: length, help, append They will be analysed ascendingly in the following order: append < help ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: length(gen_nil:cons5_0(n263_0)) -> gen_0':s4_0(n263_0), rt in Omega(1 + n263_0) Induction Base: length(gen_nil:cons5_0(0)) ->_R^Omega(1) 0' Induction Step: length(gen_nil:cons5_0(+(n263_0, 1))) ->_R^Omega(1) s(length(gen_nil:cons5_0(n263_0))) ->_IH s(gen_0':s4_0(c264_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (16) Obligation: TRS: Rules: ge(x, 0') -> true ge(0', s(y)) -> false ge(s(x), s(y)) -> ge(x, y) rev(x) -> if(x, eq(length(x)), nil, 0', length(x)) if(x, true, z, c, l) -> z if(x, false, z, c, l) -> help(s(c), l, x, z) help(c, l, cons(y), z) -> if(append(y, cons(nil)), ge(c, l), cons(z), c, l) append(nil, y) -> y append(cons(y), z) -> cons(append(y, z)) length(nil) -> 0' length(cons(y)) -> s(length(y)) Types: ge :: 0':s -> 0':s -> true:false:eq 0' :: 0':s true :: true:false:eq s :: 0':s -> 0':s false :: true:false:eq rev :: nil:cons -> nil:cons if :: nil:cons -> true:false:eq -> nil:cons -> 0':s -> 0':s -> nil:cons eq :: 0':s -> true:false:eq length :: nil:cons -> 0':s nil :: nil:cons help :: 0':s -> 0':s -> nil:cons -> nil:cons -> nil:cons cons :: nil:cons -> nil:cons append :: nil:cons -> nil:cons -> nil:cons hole_true:false:eq1_0 :: true:false:eq hole_0':s2_0 :: 0':s hole_nil:cons3_0 :: nil:cons gen_0':s4_0 :: Nat -> 0':s gen_nil:cons5_0 :: Nat -> nil:cons Lemmas: ge(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) -> true, rt in Omega(1 + n7_0) length(gen_nil:cons5_0(n263_0)) -> gen_0':s4_0(n263_0), rt in Omega(1 + n263_0) Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) gen_nil:cons5_0(0) <=> nil gen_nil:cons5_0(+(x, 1)) <=> cons(gen_nil:cons5_0(x)) The following defined symbols remain to be analysed: append, help They will be analysed ascendingly in the following order: append < help ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: append(gen_nil:cons5_0(n465_0), gen_nil:cons5_0(b)) -> gen_nil:cons5_0(+(n465_0, b)), rt in Omega(1 + n465_0) Induction Base: append(gen_nil:cons5_0(0), gen_nil:cons5_0(b)) ->_R^Omega(1) gen_nil:cons5_0(b) Induction Step: append(gen_nil:cons5_0(+(n465_0, 1)), gen_nil:cons5_0(b)) ->_R^Omega(1) cons(append(gen_nil:cons5_0(n465_0), gen_nil:cons5_0(b))) ->_IH cons(gen_nil:cons5_0(+(b, c466_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (18) Obligation: TRS: Rules: ge(x, 0') -> true ge(0', s(y)) -> false ge(s(x), s(y)) -> ge(x, y) rev(x) -> if(x, eq(length(x)), nil, 0', length(x)) if(x, true, z, c, l) -> z if(x, false, z, c, l) -> help(s(c), l, x, z) help(c, l, cons(y), z) -> if(append(y, cons(nil)), ge(c, l), cons(z), c, l) append(nil, y) -> y append(cons(y), z) -> cons(append(y, z)) length(nil) -> 0' length(cons(y)) -> s(length(y)) Types: ge :: 0':s -> 0':s -> true:false:eq 0' :: 0':s true :: true:false:eq s :: 0':s -> 0':s false :: true:false:eq rev :: nil:cons -> nil:cons if :: nil:cons -> true:false:eq -> nil:cons -> 0':s -> 0':s -> nil:cons eq :: 0':s -> true:false:eq length :: nil:cons -> 0':s nil :: nil:cons help :: 0':s -> 0':s -> nil:cons -> nil:cons -> nil:cons cons :: nil:cons -> nil:cons append :: nil:cons -> nil:cons -> nil:cons hole_true:false:eq1_0 :: true:false:eq hole_0':s2_0 :: 0':s hole_nil:cons3_0 :: nil:cons gen_0':s4_0 :: Nat -> 0':s gen_nil:cons5_0 :: Nat -> nil:cons Lemmas: ge(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) -> true, rt in Omega(1 + n7_0) length(gen_nil:cons5_0(n263_0)) -> gen_0':s4_0(n263_0), rt in Omega(1 + n263_0) append(gen_nil:cons5_0(n465_0), gen_nil:cons5_0(b)) -> gen_nil:cons5_0(+(n465_0, b)), rt in Omega(1 + n465_0) Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) gen_nil:cons5_0(0) <=> nil gen_nil:cons5_0(+(x, 1)) <=> cons(gen_nil:cons5_0(x)) The following defined symbols remain to be analysed: help