/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^2)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^2). (0) CpxTRS (1) DependencyGraphProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) NonCtorToCtorProof [UPPER BOUND(ID), 0 ms] (4) CpxRelTRS (5) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxRelTRS (7) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxWeightedTrs (9) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxTypedWeightedTrs (11) CompletionProof [UPPER BOUND(ID), 0 ms] (12) CpxTypedWeightedCompleteTrs (13) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxTypedWeightedCompleteTrs (15) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (16) CpxRNTS (17) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (18) CpxRNTS (19) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (20) CpxRNTS (21) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 578 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 158 ms] (26) CpxRNTS (27) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 263 ms] (30) CpxRNTS (31) IntTrsBoundProof [UPPER BOUND(ID), 5 ms] (32) CpxRNTS (33) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (34) CpxRNTS (35) IntTrsBoundProof [UPPER BOUND(ID), 130 ms] (36) CpxRNTS (37) IntTrsBoundProof [UPPER BOUND(ID), 14 ms] (38) CpxRNTS (39) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (40) CpxRNTS (41) IntTrsBoundProof [UPPER BOUND(ID), 758 ms] (42) CpxRNTS (43) IntTrsBoundProof [UPPER BOUND(ID), 494 ms] (44) CpxRNTS (45) FinalProof [FINISHED, 0 ms] (46) BOUNDS(1, n^2) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: f(j(x, y), y) -> g(f(x, k(y))) f(x, h1(y, z)) -> h2(0, x, h1(y, z)) g(h2(x, y, h1(z, u))) -> h2(s(x), y, h1(z, u)) h2(x, j(y, h1(z, u)), h1(z, u)) -> h2(s(x), y, h1(s(z), u)) i(f(x, h(y))) -> y i(h2(s(x), y, h1(x, z))) -> z k(h(x)) -> h1(0, x) k(h1(x, y)) -> h1(s(x), y) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DependencyGraphProof (UPPER BOUND(ID)) The following rules are not reachable from basic terms in the dependency graph and can be removed: i(f(x, h(y))) -> y i(h2(s(x), y, h1(x, z))) -> z ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: f(j(x, y), y) -> g(f(x, k(y))) f(x, h1(y, z)) -> h2(0, x, h1(y, z)) g(h2(x, y, h1(z, u))) -> h2(s(x), y, h1(z, u)) h2(x, j(y, h1(z, u)), h1(z, u)) -> h2(s(x), y, h1(s(z), u)) k(h(x)) -> h1(0, x) k(h1(x, y)) -> h1(s(x), y) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) NonCtorToCtorProof (UPPER BOUND(ID)) transformed non-ctor to ctor-system ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: f(j(x, y), y) -> g(f(x, k(y))) f(x, h1(y, z)) -> h2(0, x, h1(y, z)) h2(x, j(y, h1(z, u)), h1(z, u)) -> h2(s(x), y, h1(s(z), u)) k(h(x)) -> h1(0, x) k(h1(x, y)) -> h1(s(x), y) g(c_h2(x, y, h1(z, u))) -> h2(s(x), y, h1(z, u)) The (relative) TRS S consists of the following rules: h2(x0, x1, x2) -> c_h2(x0, x1, x2) Rewrite Strategy: FULL ---------------------------------------- (5) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. As the TRS is a non-duplicating overlay system, we have rc = irc. ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: f(j(x, y), y) -> g(f(x, k(y))) f(x, h1(y, z)) -> h2(0, x, h1(y, z)) h2(x, j(y, h1(z, u)), h1(z, u)) -> h2(s(x), y, h1(s(z), u)) k(h(x)) -> h1(0, x) k(h1(x, y)) -> h1(s(x), y) g(c_h2(x, y, h1(z, u))) -> h2(s(x), y, h1(z, u)) The (relative) TRS S consists of the following rules: h2(x0, x1, x2) -> c_h2(x0, x1, x2) Rewrite Strategy: INNERMOST ---------------------------------------- (7) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: f(j(x, y), y) -> g(f(x, k(y))) [1] f(x, h1(y, z)) -> h2(0, x, h1(y, z)) [1] h2(x, j(y, h1(z, u)), h1(z, u)) -> h2(s(x), y, h1(s(z), u)) [1] k(h(x)) -> h1(0, x) [1] k(h1(x, y)) -> h1(s(x), y) [1] g(c_h2(x, y, h1(z, u))) -> h2(s(x), y, h1(z, u)) [1] h2(x0, x1, x2) -> c_h2(x0, x1, x2) [0] Rewrite Strategy: INNERMOST ---------------------------------------- (9) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(j(x, y), y) -> g(f(x, k(y))) [1] f(x, h1(y, z)) -> h2(0, x, h1(y, z)) [1] h2(x, j(y, h1(z, u)), h1(z, u)) -> h2(s(x), y, h1(s(z), u)) [1] k(h(x)) -> h1(0, x) [1] k(h1(x, y)) -> h1(s(x), y) [1] g(c_h2(x, y, h1(z, u))) -> h2(s(x), y, h1(z, u)) [1] h2(x0, x1, x2) -> c_h2(x0, x1, x2) [0] The TRS has the following type information: f :: j -> h1:h -> c_h2 j :: j -> h1:h -> j g :: c_h2 -> c_h2 k :: h1:h -> h1:h h1 :: 0:s -> a -> h1:h h2 :: 0:s -> j -> h1:h -> c_h2 0 :: 0:s s :: 0:s -> 0:s h :: a -> h1:h c_h2 :: 0:s -> j -> h1:h -> c_h2 Rewrite Strategy: INNERMOST ---------------------------------------- (11) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: none (c) The following functions are completely defined: f_2 k_1 g_1 h2_3 Due to the following rules being added: h2(v0, v1, v2) -> const [0] f(v0, v1) -> const [0] k(v0) -> const2 [0] g(v0) -> const [0] And the following fresh constants: const, const2, const1, const3 ---------------------------------------- (12) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(j(x, y), y) -> g(f(x, k(y))) [1] f(x, h1(y, z)) -> h2(0, x, h1(y, z)) [1] h2(x, j(y, h1(z, u)), h1(z, u)) -> h2(s(x), y, h1(s(z), u)) [1] k(h(x)) -> h1(0, x) [1] k(h1(x, y)) -> h1(s(x), y) [1] g(c_h2(x, y, h1(z, u))) -> h2(s(x), y, h1(z, u)) [1] h2(x0, x1, x2) -> c_h2(x0, x1, x2) [0] h2(v0, v1, v2) -> const [0] f(v0, v1) -> const [0] k(v0) -> const2 [0] g(v0) -> const [0] The TRS has the following type information: f :: j -> h1:h:const2 -> c_h2:const j :: j -> h1:h:const2 -> j g :: c_h2:const -> c_h2:const k :: h1:h:const2 -> h1:h:const2 h1 :: 0:s -> a -> h1:h:const2 h2 :: 0:s -> j -> h1:h:const2 -> c_h2:const 0 :: 0:s s :: 0:s -> 0:s h :: a -> h1:h:const2 c_h2 :: 0:s -> j -> h1:h:const2 -> c_h2:const const :: c_h2:const const2 :: h1:h:const2 const1 :: j const3 :: a Rewrite Strategy: INNERMOST ---------------------------------------- (13) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (14) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(j(x, h(x')), h(x')) -> g(f(x, h1(0, x'))) [2] f(j(x, h1(x'', y')), h1(x'', y')) -> g(f(x, h1(s(x''), y'))) [2] f(j(x, y), y) -> g(f(x, const2)) [1] f(x, h1(y, z)) -> h2(0, x, h1(y, z)) [1] h2(x, j(y, h1(z, u)), h1(z, u)) -> h2(s(x), y, h1(s(z), u)) [1] k(h(x)) -> h1(0, x) [1] k(h1(x, y)) -> h1(s(x), y) [1] g(c_h2(x, y, h1(z, u))) -> h2(s(x), y, h1(z, u)) [1] h2(x0, x1, x2) -> c_h2(x0, x1, x2) [0] h2(v0, v1, v2) -> const [0] f(v0, v1) -> const [0] k(v0) -> const2 [0] g(v0) -> const [0] The TRS has the following type information: f :: j -> h1:h:const2 -> c_h2:const j :: j -> h1:h:const2 -> j g :: c_h2:const -> c_h2:const k :: h1:h:const2 -> h1:h:const2 h1 :: 0:s -> a -> h1:h:const2 h2 :: 0:s -> j -> h1:h:const2 -> c_h2:const 0 :: 0:s s :: 0:s -> 0:s h :: a -> h1:h:const2 c_h2 :: 0:s -> j -> h1:h:const2 -> c_h2:const const :: c_h2:const const2 :: h1:h:const2 const1 :: j const3 :: a Rewrite Strategy: INNERMOST ---------------------------------------- (15) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 const => 0 const2 => 0 const1 => 0 const3 => 0 ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: f(z', z'') -{ 1 }-> h2(0, x, 1 + y + z) :|: z >= 0, z' = x, x >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> g(f(x, 0)) :|: z'' = y, z' = 1 + x + y, x >= 0, y >= 0 f(z', z'') -{ 2 }-> g(f(x, 1 + 0 + x')) :|: z' = 1 + x + (1 + x'), z'' = 1 + x', x >= 0, x' >= 0 f(z', z'') -{ 2 }-> g(f(x, 1 + (1 + x'') + y')) :|: z' = 1 + x + (1 + x'' + y'), x >= 0, z'' = 1 + x'' + y', y' >= 0, x'' >= 0 f(z', z'') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z'' = v1, z' = v0 g(z') -{ 1 }-> h2(1 + x, y, 1 + z + u) :|: z >= 0, x >= 0, y >= 0, z' = 1 + x + y + (1 + z + u), u >= 0 g(z') -{ 0 }-> 0 :|: v0 >= 0, z' = v0 h2(z', z'', z1) -{ 1 }-> h2(1 + x, y, 1 + (1 + z) + u) :|: z >= 0, z' = x, x >= 0, y >= 0, z1 = 1 + z + u, z'' = 1 + y + (1 + z + u), u >= 0 h2(z', z'', z1) -{ 0 }-> 0 :|: v0 >= 0, z1 = v2, v1 >= 0, z'' = v1, v2 >= 0, z' = v0 h2(z', z'', z1) -{ 0 }-> 1 + x0 + x1 + x2 :|: z'' = x1, x0 >= 0, x1 >= 0, z1 = x2, x2 >= 0, z' = x0 k(z') -{ 0 }-> 0 :|: v0 >= 0, z' = v0 k(z') -{ 1 }-> 1 + 0 + x :|: z' = 1 + x, x >= 0 k(z') -{ 1 }-> 1 + (1 + x) + y :|: z' = 1 + x + y, x >= 0, y >= 0 ---------------------------------------- (17) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: f(z', z'') -{ 1 }-> h2(0, z', 1 + y + z) :|: z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> g(f(x, 0)) :|: z' = 1 + x + z'', x >= 0, z'' >= 0 f(z', z'') -{ 2 }-> g(f(x, 1 + 0 + (z'' - 1))) :|: z' = 1 + x + (1 + (z'' - 1)), x >= 0, z'' - 1 >= 0 f(z', z'') -{ 2 }-> g(f(x, 1 + (1 + x'') + y')) :|: z' = 1 + x + (1 + x'' + y'), x >= 0, z'' = 1 + x'' + y', y' >= 0, x'' >= 0 f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 g(z') -{ 1 }-> h2(1 + x, y, 1 + z + u) :|: z >= 0, x >= 0, y >= 0, z' = 1 + x + y + (1 + z + u), u >= 0 g(z') -{ 0 }-> 0 :|: z' >= 0 h2(z', z'', z1) -{ 1 }-> h2(1 + z', y, 1 + (1 + z) + u) :|: z >= 0, z' >= 0, y >= 0, z1 = 1 + z + u, z'' = 1 + y + (1 + z + u), u >= 0 h2(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 h2(z', z'', z1) -{ 0 }-> 1 + z' + z'' + z1 :|: z' >= 0, z'' >= 0, z1 >= 0 k(z') -{ 0 }-> 0 :|: z' >= 0 k(z') -{ 1 }-> 1 + 0 + (z' - 1) :|: z' - 1 >= 0 k(z') -{ 1 }-> 1 + (1 + x) + y :|: z' = 1 + x + y, x >= 0, y >= 0 ---------------------------------------- (19) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { h2 } { k } { g } { f } ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: f(z', z'') -{ 1 }-> h2(0, z', 1 + y + z) :|: z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> g(f(x, 0)) :|: z' = 1 + x + z'', x >= 0, z'' >= 0 f(z', z'') -{ 2 }-> g(f(x, 1 + 0 + (z'' - 1))) :|: z' = 1 + x + (1 + (z'' - 1)), x >= 0, z'' - 1 >= 0 f(z', z'') -{ 2 }-> g(f(x, 1 + (1 + x'') + y')) :|: z' = 1 + x + (1 + x'' + y'), x >= 0, z'' = 1 + x'' + y', y' >= 0, x'' >= 0 f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 g(z') -{ 1 }-> h2(1 + x, y, 1 + z + u) :|: z >= 0, x >= 0, y >= 0, z' = 1 + x + y + (1 + z + u), u >= 0 g(z') -{ 0 }-> 0 :|: z' >= 0 h2(z', z'', z1) -{ 1 }-> h2(1 + z', y, 1 + (1 + z) + u) :|: z >= 0, z' >= 0, y >= 0, z1 = 1 + z + u, z'' = 1 + y + (1 + z + u), u >= 0 h2(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 h2(z', z'', z1) -{ 0 }-> 1 + z' + z'' + z1 :|: z' >= 0, z'' >= 0, z1 >= 0 k(z') -{ 0 }-> 0 :|: z' >= 0 k(z') -{ 1 }-> 1 + 0 + (z' - 1) :|: z' - 1 >= 0 k(z') -{ 1 }-> 1 + (1 + x) + y :|: z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {h2}, {k}, {g}, {f} ---------------------------------------- (21) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: f(z', z'') -{ 1 }-> h2(0, z', 1 + y + z) :|: z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> g(f(x, 0)) :|: z' = 1 + x + z'', x >= 0, z'' >= 0 f(z', z'') -{ 2 }-> g(f(x, 1 + 0 + (z'' - 1))) :|: z' = 1 + x + (1 + (z'' - 1)), x >= 0, z'' - 1 >= 0 f(z', z'') -{ 2 }-> g(f(x, 1 + (1 + x'') + y')) :|: z' = 1 + x + (1 + x'' + y'), x >= 0, z'' = 1 + x'' + y', y' >= 0, x'' >= 0 f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 g(z') -{ 1 }-> h2(1 + x, y, 1 + z + u) :|: z >= 0, x >= 0, y >= 0, z' = 1 + x + y + (1 + z + u), u >= 0 g(z') -{ 0 }-> 0 :|: z' >= 0 h2(z', z'', z1) -{ 1 }-> h2(1 + z', y, 1 + (1 + z) + u) :|: z >= 0, z' >= 0, y >= 0, z1 = 1 + z + u, z'' = 1 + y + (1 + z + u), u >= 0 h2(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 h2(z', z'', z1) -{ 0 }-> 1 + z' + z'' + z1 :|: z' >= 0, z'' >= 0, z1 >= 0 k(z') -{ 0 }-> 0 :|: z' >= 0 k(z') -{ 1 }-> 1 + 0 + (z' - 1) :|: z' - 1 >= 0 k(z') -{ 1 }-> 1 + (1 + x) + y :|: z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {h2}, {k}, {g}, {f} ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: h2 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z' + z'' + z1 ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: f(z', z'') -{ 1 }-> h2(0, z', 1 + y + z) :|: z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> g(f(x, 0)) :|: z' = 1 + x + z'', x >= 0, z'' >= 0 f(z', z'') -{ 2 }-> g(f(x, 1 + 0 + (z'' - 1))) :|: z' = 1 + x + (1 + (z'' - 1)), x >= 0, z'' - 1 >= 0 f(z', z'') -{ 2 }-> g(f(x, 1 + (1 + x'') + y')) :|: z' = 1 + x + (1 + x'' + y'), x >= 0, z'' = 1 + x'' + y', y' >= 0, x'' >= 0 f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 g(z') -{ 1 }-> h2(1 + x, y, 1 + z + u) :|: z >= 0, x >= 0, y >= 0, z' = 1 + x + y + (1 + z + u), u >= 0 g(z') -{ 0 }-> 0 :|: z' >= 0 h2(z', z'', z1) -{ 1 }-> h2(1 + z', y, 1 + (1 + z) + u) :|: z >= 0, z' >= 0, y >= 0, z1 = 1 + z + u, z'' = 1 + y + (1 + z + u), u >= 0 h2(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 h2(z', z'', z1) -{ 0 }-> 1 + z' + z'' + z1 :|: z' >= 0, z'' >= 0, z1 >= 0 k(z') -{ 0 }-> 0 :|: z' >= 0 k(z') -{ 1 }-> 1 + 0 + (z' - 1) :|: z' - 1 >= 0 k(z') -{ 1 }-> 1 + (1 + x) + y :|: z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {h2}, {k}, {g}, {f} Previous analysis results are: h2: runtime: ?, size: O(n^1) [1 + z' + z'' + z1] ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: h2 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z'' ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: f(z', z'') -{ 1 }-> h2(0, z', 1 + y + z) :|: z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> g(f(x, 0)) :|: z' = 1 + x + z'', x >= 0, z'' >= 0 f(z', z'') -{ 2 }-> g(f(x, 1 + 0 + (z'' - 1))) :|: z' = 1 + x + (1 + (z'' - 1)), x >= 0, z'' - 1 >= 0 f(z', z'') -{ 2 }-> g(f(x, 1 + (1 + x'') + y')) :|: z' = 1 + x + (1 + x'' + y'), x >= 0, z'' = 1 + x'' + y', y' >= 0, x'' >= 0 f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 g(z') -{ 1 }-> h2(1 + x, y, 1 + z + u) :|: z >= 0, x >= 0, y >= 0, z' = 1 + x + y + (1 + z + u), u >= 0 g(z') -{ 0 }-> 0 :|: z' >= 0 h2(z', z'', z1) -{ 1 }-> h2(1 + z', y, 1 + (1 + z) + u) :|: z >= 0, z' >= 0, y >= 0, z1 = 1 + z + u, z'' = 1 + y + (1 + z + u), u >= 0 h2(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 h2(z', z'', z1) -{ 0 }-> 1 + z' + z'' + z1 :|: z' >= 0, z'' >= 0, z1 >= 0 k(z') -{ 0 }-> 0 :|: z' >= 0 k(z') -{ 1 }-> 1 + 0 + (z' - 1) :|: z' - 1 >= 0 k(z') -{ 1 }-> 1 + (1 + x) + y :|: z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {k}, {g}, {f} Previous analysis results are: h2: runtime: O(n^1) [z''], size: O(n^1) [1 + z' + z'' + z1] ---------------------------------------- (27) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: f(z', z'') -{ 1 + z' }-> s :|: s >= 0, s <= 0 + z' + (1 + y + z) + 1, z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> g(f(x, 0)) :|: z' = 1 + x + z'', x >= 0, z'' >= 0 f(z', z'') -{ 2 }-> g(f(x, 1 + 0 + (z'' - 1))) :|: z' = 1 + x + (1 + (z'' - 1)), x >= 0, z'' - 1 >= 0 f(z', z'') -{ 2 }-> g(f(x, 1 + (1 + x'') + y')) :|: z' = 1 + x + (1 + x'' + y'), x >= 0, z'' = 1 + x'' + y', y' >= 0, x'' >= 0 f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 g(z') -{ 1 + y }-> s'' :|: s'' >= 0, s'' <= 1 + x + y + (1 + z + u) + 1, z >= 0, x >= 0, y >= 0, z' = 1 + x + y + (1 + z + u), u >= 0 g(z') -{ 0 }-> 0 :|: z' >= 0 h2(z', z'', z1) -{ 1 + y }-> s' :|: s' >= 0, s' <= 1 + z' + y + (1 + (1 + z) + u) + 1, z >= 0, z' >= 0, y >= 0, z1 = 1 + z + u, z'' = 1 + y + (1 + z + u), u >= 0 h2(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 h2(z', z'', z1) -{ 0 }-> 1 + z' + z'' + z1 :|: z' >= 0, z'' >= 0, z1 >= 0 k(z') -{ 0 }-> 0 :|: z' >= 0 k(z') -{ 1 }-> 1 + 0 + (z' - 1) :|: z' - 1 >= 0 k(z') -{ 1 }-> 1 + (1 + x) + y :|: z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {k}, {g}, {f} Previous analysis results are: h2: runtime: O(n^1) [z''], size: O(n^1) [1 + z' + z'' + z1] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: k after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z' ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: f(z', z'') -{ 1 + z' }-> s :|: s >= 0, s <= 0 + z' + (1 + y + z) + 1, z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> g(f(x, 0)) :|: z' = 1 + x + z'', x >= 0, z'' >= 0 f(z', z'') -{ 2 }-> g(f(x, 1 + 0 + (z'' - 1))) :|: z' = 1 + x + (1 + (z'' - 1)), x >= 0, z'' - 1 >= 0 f(z', z'') -{ 2 }-> g(f(x, 1 + (1 + x'') + y')) :|: z' = 1 + x + (1 + x'' + y'), x >= 0, z'' = 1 + x'' + y', y' >= 0, x'' >= 0 f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 g(z') -{ 1 + y }-> s'' :|: s'' >= 0, s'' <= 1 + x + y + (1 + z + u) + 1, z >= 0, x >= 0, y >= 0, z' = 1 + x + y + (1 + z + u), u >= 0 g(z') -{ 0 }-> 0 :|: z' >= 0 h2(z', z'', z1) -{ 1 + y }-> s' :|: s' >= 0, s' <= 1 + z' + y + (1 + (1 + z) + u) + 1, z >= 0, z' >= 0, y >= 0, z1 = 1 + z + u, z'' = 1 + y + (1 + z + u), u >= 0 h2(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 h2(z', z'', z1) -{ 0 }-> 1 + z' + z'' + z1 :|: z' >= 0, z'' >= 0, z1 >= 0 k(z') -{ 0 }-> 0 :|: z' >= 0 k(z') -{ 1 }-> 1 + 0 + (z' - 1) :|: z' - 1 >= 0 k(z') -{ 1 }-> 1 + (1 + x) + y :|: z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {k}, {g}, {f} Previous analysis results are: h2: runtime: O(n^1) [z''], size: O(n^1) [1 + z' + z'' + z1] k: runtime: ?, size: O(n^1) [1 + z'] ---------------------------------------- (31) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: k after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: f(z', z'') -{ 1 + z' }-> s :|: s >= 0, s <= 0 + z' + (1 + y + z) + 1, z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> g(f(x, 0)) :|: z' = 1 + x + z'', x >= 0, z'' >= 0 f(z', z'') -{ 2 }-> g(f(x, 1 + 0 + (z'' - 1))) :|: z' = 1 + x + (1 + (z'' - 1)), x >= 0, z'' - 1 >= 0 f(z', z'') -{ 2 }-> g(f(x, 1 + (1 + x'') + y')) :|: z' = 1 + x + (1 + x'' + y'), x >= 0, z'' = 1 + x'' + y', y' >= 0, x'' >= 0 f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 g(z') -{ 1 + y }-> s'' :|: s'' >= 0, s'' <= 1 + x + y + (1 + z + u) + 1, z >= 0, x >= 0, y >= 0, z' = 1 + x + y + (1 + z + u), u >= 0 g(z') -{ 0 }-> 0 :|: z' >= 0 h2(z', z'', z1) -{ 1 + y }-> s' :|: s' >= 0, s' <= 1 + z' + y + (1 + (1 + z) + u) + 1, z >= 0, z' >= 0, y >= 0, z1 = 1 + z + u, z'' = 1 + y + (1 + z + u), u >= 0 h2(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 h2(z', z'', z1) -{ 0 }-> 1 + z' + z'' + z1 :|: z' >= 0, z'' >= 0, z1 >= 0 k(z') -{ 0 }-> 0 :|: z' >= 0 k(z') -{ 1 }-> 1 + 0 + (z' - 1) :|: z' - 1 >= 0 k(z') -{ 1 }-> 1 + (1 + x) + y :|: z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {g}, {f} Previous analysis results are: h2: runtime: O(n^1) [z''], size: O(n^1) [1 + z' + z'' + z1] k: runtime: O(1) [1], size: O(n^1) [1 + z'] ---------------------------------------- (33) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: f(z', z'') -{ 1 + z' }-> s :|: s >= 0, s <= 0 + z' + (1 + y + z) + 1, z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> g(f(x, 0)) :|: z' = 1 + x + z'', x >= 0, z'' >= 0 f(z', z'') -{ 2 }-> g(f(x, 1 + 0 + (z'' - 1))) :|: z' = 1 + x + (1 + (z'' - 1)), x >= 0, z'' - 1 >= 0 f(z', z'') -{ 2 }-> g(f(x, 1 + (1 + x'') + y')) :|: z' = 1 + x + (1 + x'' + y'), x >= 0, z'' = 1 + x'' + y', y' >= 0, x'' >= 0 f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 g(z') -{ 1 + y }-> s'' :|: s'' >= 0, s'' <= 1 + x + y + (1 + z + u) + 1, z >= 0, x >= 0, y >= 0, z' = 1 + x + y + (1 + z + u), u >= 0 g(z') -{ 0 }-> 0 :|: z' >= 0 h2(z', z'', z1) -{ 1 + y }-> s' :|: s' >= 0, s' <= 1 + z' + y + (1 + (1 + z) + u) + 1, z >= 0, z' >= 0, y >= 0, z1 = 1 + z + u, z'' = 1 + y + (1 + z + u), u >= 0 h2(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 h2(z', z'', z1) -{ 0 }-> 1 + z' + z'' + z1 :|: z' >= 0, z'' >= 0, z1 >= 0 k(z') -{ 0 }-> 0 :|: z' >= 0 k(z') -{ 1 }-> 1 + 0 + (z' - 1) :|: z' - 1 >= 0 k(z') -{ 1 }-> 1 + (1 + x) + y :|: z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {g}, {f} Previous analysis results are: h2: runtime: O(n^1) [z''], size: O(n^1) [1 + z' + z'' + z1] k: runtime: O(1) [1], size: O(n^1) [1 + z'] ---------------------------------------- (35) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: g after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z' ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: f(z', z'') -{ 1 + z' }-> s :|: s >= 0, s <= 0 + z' + (1 + y + z) + 1, z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> g(f(x, 0)) :|: z' = 1 + x + z'', x >= 0, z'' >= 0 f(z', z'') -{ 2 }-> g(f(x, 1 + 0 + (z'' - 1))) :|: z' = 1 + x + (1 + (z'' - 1)), x >= 0, z'' - 1 >= 0 f(z', z'') -{ 2 }-> g(f(x, 1 + (1 + x'') + y')) :|: z' = 1 + x + (1 + x'' + y'), x >= 0, z'' = 1 + x'' + y', y' >= 0, x'' >= 0 f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 g(z') -{ 1 + y }-> s'' :|: s'' >= 0, s'' <= 1 + x + y + (1 + z + u) + 1, z >= 0, x >= 0, y >= 0, z' = 1 + x + y + (1 + z + u), u >= 0 g(z') -{ 0 }-> 0 :|: z' >= 0 h2(z', z'', z1) -{ 1 + y }-> s' :|: s' >= 0, s' <= 1 + z' + y + (1 + (1 + z) + u) + 1, z >= 0, z' >= 0, y >= 0, z1 = 1 + z + u, z'' = 1 + y + (1 + z + u), u >= 0 h2(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 h2(z', z'', z1) -{ 0 }-> 1 + z' + z'' + z1 :|: z' >= 0, z'' >= 0, z1 >= 0 k(z') -{ 0 }-> 0 :|: z' >= 0 k(z') -{ 1 }-> 1 + 0 + (z' - 1) :|: z' - 1 >= 0 k(z') -{ 1 }-> 1 + (1 + x) + y :|: z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {g}, {f} Previous analysis results are: h2: runtime: O(n^1) [z''], size: O(n^1) [1 + z' + z'' + z1] k: runtime: O(1) [1], size: O(n^1) [1 + z'] g: runtime: ?, size: O(n^1) [1 + z'] ---------------------------------------- (37) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: g after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z' ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: f(z', z'') -{ 1 + z' }-> s :|: s >= 0, s <= 0 + z' + (1 + y + z) + 1, z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> g(f(x, 0)) :|: z' = 1 + x + z'', x >= 0, z'' >= 0 f(z', z'') -{ 2 }-> g(f(x, 1 + 0 + (z'' - 1))) :|: z' = 1 + x + (1 + (z'' - 1)), x >= 0, z'' - 1 >= 0 f(z', z'') -{ 2 }-> g(f(x, 1 + (1 + x'') + y')) :|: z' = 1 + x + (1 + x'' + y'), x >= 0, z'' = 1 + x'' + y', y' >= 0, x'' >= 0 f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 g(z') -{ 1 + y }-> s'' :|: s'' >= 0, s'' <= 1 + x + y + (1 + z + u) + 1, z >= 0, x >= 0, y >= 0, z' = 1 + x + y + (1 + z + u), u >= 0 g(z') -{ 0 }-> 0 :|: z' >= 0 h2(z', z'', z1) -{ 1 + y }-> s' :|: s' >= 0, s' <= 1 + z' + y + (1 + (1 + z) + u) + 1, z >= 0, z' >= 0, y >= 0, z1 = 1 + z + u, z'' = 1 + y + (1 + z + u), u >= 0 h2(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 h2(z', z'', z1) -{ 0 }-> 1 + z' + z'' + z1 :|: z' >= 0, z'' >= 0, z1 >= 0 k(z') -{ 0 }-> 0 :|: z' >= 0 k(z') -{ 1 }-> 1 + 0 + (z' - 1) :|: z' - 1 >= 0 k(z') -{ 1 }-> 1 + (1 + x) + y :|: z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {f} Previous analysis results are: h2: runtime: O(n^1) [z''], size: O(n^1) [1 + z' + z'' + z1] k: runtime: O(1) [1], size: O(n^1) [1 + z'] g: runtime: O(n^1) [1 + z'], size: O(n^1) [1 + z'] ---------------------------------------- (39) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: f(z', z'') -{ 1 + z' }-> s :|: s >= 0, s <= 0 + z' + (1 + y + z) + 1, z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> g(f(x, 0)) :|: z' = 1 + x + z'', x >= 0, z'' >= 0 f(z', z'') -{ 2 }-> g(f(x, 1 + 0 + (z'' - 1))) :|: z' = 1 + x + (1 + (z'' - 1)), x >= 0, z'' - 1 >= 0 f(z', z'') -{ 2 }-> g(f(x, 1 + (1 + x'') + y')) :|: z' = 1 + x + (1 + x'' + y'), x >= 0, z'' = 1 + x'' + y', y' >= 0, x'' >= 0 f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 g(z') -{ 1 + y }-> s'' :|: s'' >= 0, s'' <= 1 + x + y + (1 + z + u) + 1, z >= 0, x >= 0, y >= 0, z' = 1 + x + y + (1 + z + u), u >= 0 g(z') -{ 0 }-> 0 :|: z' >= 0 h2(z', z'', z1) -{ 1 + y }-> s' :|: s' >= 0, s' <= 1 + z' + y + (1 + (1 + z) + u) + 1, z >= 0, z' >= 0, y >= 0, z1 = 1 + z + u, z'' = 1 + y + (1 + z + u), u >= 0 h2(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 h2(z', z'', z1) -{ 0 }-> 1 + z' + z'' + z1 :|: z' >= 0, z'' >= 0, z1 >= 0 k(z') -{ 0 }-> 0 :|: z' >= 0 k(z') -{ 1 }-> 1 + 0 + (z' - 1) :|: z' - 1 >= 0 k(z') -{ 1 }-> 1 + (1 + x) + y :|: z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {f} Previous analysis results are: h2: runtime: O(n^1) [z''], size: O(n^1) [1 + z' + z'' + z1] k: runtime: O(1) [1], size: O(n^1) [1 + z'] g: runtime: O(n^1) [1 + z'], size: O(n^1) [1 + z'] ---------------------------------------- (41) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: f after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z' + z'' ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: f(z', z'') -{ 1 + z' }-> s :|: s >= 0, s <= 0 + z' + (1 + y + z) + 1, z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> g(f(x, 0)) :|: z' = 1 + x + z'', x >= 0, z'' >= 0 f(z', z'') -{ 2 }-> g(f(x, 1 + 0 + (z'' - 1))) :|: z' = 1 + x + (1 + (z'' - 1)), x >= 0, z'' - 1 >= 0 f(z', z'') -{ 2 }-> g(f(x, 1 + (1 + x'') + y')) :|: z' = 1 + x + (1 + x'' + y'), x >= 0, z'' = 1 + x'' + y', y' >= 0, x'' >= 0 f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 g(z') -{ 1 + y }-> s'' :|: s'' >= 0, s'' <= 1 + x + y + (1 + z + u) + 1, z >= 0, x >= 0, y >= 0, z' = 1 + x + y + (1 + z + u), u >= 0 g(z') -{ 0 }-> 0 :|: z' >= 0 h2(z', z'', z1) -{ 1 + y }-> s' :|: s' >= 0, s' <= 1 + z' + y + (1 + (1 + z) + u) + 1, z >= 0, z' >= 0, y >= 0, z1 = 1 + z + u, z'' = 1 + y + (1 + z + u), u >= 0 h2(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 h2(z', z'', z1) -{ 0 }-> 1 + z' + z'' + z1 :|: z' >= 0, z'' >= 0, z1 >= 0 k(z') -{ 0 }-> 0 :|: z' >= 0 k(z') -{ 1 }-> 1 + 0 + (z' - 1) :|: z' - 1 >= 0 k(z') -{ 1 }-> 1 + (1 + x) + y :|: z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {f} Previous analysis results are: h2: runtime: O(n^1) [z''], size: O(n^1) [1 + z' + z'' + z1] k: runtime: O(1) [1], size: O(n^1) [1 + z'] g: runtime: O(n^1) [1 + z'], size: O(n^1) [1 + z'] f: runtime: ?, size: O(n^1) [1 + z' + z''] ---------------------------------------- (43) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: f after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 8 + 6*z' + 2*z'*z'' + z'^2 + 4*z'' + z''^2 ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: f(z', z'') -{ 1 + z' }-> s :|: s >= 0, s <= 0 + z' + (1 + y + z) + 1, z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> g(f(x, 0)) :|: z' = 1 + x + z'', x >= 0, z'' >= 0 f(z', z'') -{ 2 }-> g(f(x, 1 + 0 + (z'' - 1))) :|: z' = 1 + x + (1 + (z'' - 1)), x >= 0, z'' - 1 >= 0 f(z', z'') -{ 2 }-> g(f(x, 1 + (1 + x'') + y')) :|: z' = 1 + x + (1 + x'' + y'), x >= 0, z'' = 1 + x'' + y', y' >= 0, x'' >= 0 f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 g(z') -{ 1 + y }-> s'' :|: s'' >= 0, s'' <= 1 + x + y + (1 + z + u) + 1, z >= 0, x >= 0, y >= 0, z' = 1 + x + y + (1 + z + u), u >= 0 g(z') -{ 0 }-> 0 :|: z' >= 0 h2(z', z'', z1) -{ 1 + y }-> s' :|: s' >= 0, s' <= 1 + z' + y + (1 + (1 + z) + u) + 1, z >= 0, z' >= 0, y >= 0, z1 = 1 + z + u, z'' = 1 + y + (1 + z + u), u >= 0 h2(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 h2(z', z'', z1) -{ 0 }-> 1 + z' + z'' + z1 :|: z' >= 0, z'' >= 0, z1 >= 0 k(z') -{ 0 }-> 0 :|: z' >= 0 k(z') -{ 1 }-> 1 + 0 + (z' - 1) :|: z' - 1 >= 0 k(z') -{ 1 }-> 1 + (1 + x) + y :|: z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: Previous analysis results are: h2: runtime: O(n^1) [z''], size: O(n^1) [1 + z' + z'' + z1] k: runtime: O(1) [1], size: O(n^1) [1 + z'] g: runtime: O(n^1) [1 + z'], size: O(n^1) [1 + z'] f: runtime: O(n^2) [8 + 6*z' + 2*z'*z'' + z'^2 + 4*z'' + z''^2], size: O(n^1) [1 + z' + z''] ---------------------------------------- (45) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (46) BOUNDS(1, n^2)