/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^2)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). (0) CpxTRS (1) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (4) CdtProblem (5) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 20 ms] (8) CdtProblem (9) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 6 ms] (10) CdtProblem (11) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (12) BOUNDS(1, 1) (13) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (14) TRS for Loop Detection (15) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (16) BEST (17) proven lower bound (18) LowerBoundPropagationProof [FINISHED, 0 ms] (19) BOUNDS(n^1, INF) (20) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: sum(0) -> 0 sum(s(x)) -> +(sum(x), s(x)) +(x, 0) -> x +(x, s(y)) -> s(+(x, y)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. The duplicating contexts are: sum(s([])) The defined contexts are: +([], s(x1)) +([], x1) As the TRS is an overlay system and the defined contexts and the duplicating contexts don't overlap, we have rc = irc. ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: sum(0) -> 0 sum(s(x)) -> +(sum(x), s(x)) +(x, 0) -> x +(x, s(y)) -> s(+(x, y)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: sum(0) -> 0 sum(s(z0)) -> +(sum(z0), s(z0)) +(z0, 0) -> z0 +(z0, s(z1)) -> s(+(z0, z1)) Tuples: SUM(0) -> c SUM(s(z0)) -> c1(+'(sum(z0), s(z0)), SUM(z0)) +'(z0, 0) -> c2 +'(z0, s(z1)) -> c3(+'(z0, z1)) S tuples: SUM(0) -> c SUM(s(z0)) -> c1(+'(sum(z0), s(z0)), SUM(z0)) +'(z0, 0) -> c2 +'(z0, s(z1)) -> c3(+'(z0, z1)) K tuples:none Defined Rule Symbols: sum_1, +_2 Defined Pair Symbols: SUM_1, +'_2 Compound Symbols: c, c1_2, c2, c3_1 ---------------------------------------- (5) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 2 trailing nodes: SUM(0) -> c +'(z0, 0) -> c2 ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: sum(0) -> 0 sum(s(z0)) -> +(sum(z0), s(z0)) +(z0, 0) -> z0 +(z0, s(z1)) -> s(+(z0, z1)) Tuples: SUM(s(z0)) -> c1(+'(sum(z0), s(z0)), SUM(z0)) +'(z0, s(z1)) -> c3(+'(z0, z1)) S tuples: SUM(s(z0)) -> c1(+'(sum(z0), s(z0)), SUM(z0)) +'(z0, s(z1)) -> c3(+'(z0, z1)) K tuples:none Defined Rule Symbols: sum_1, +_2 Defined Pair Symbols: SUM_1, +'_2 Compound Symbols: c1_2, c3_1 ---------------------------------------- (7) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. SUM(s(z0)) -> c1(+'(sum(z0), s(z0)), SUM(z0)) We considered the (Usable) Rules:none And the Tuples: SUM(s(z0)) -> c1(+'(sum(z0), s(z0)), SUM(z0)) +'(z0, s(z1)) -> c3(+'(z0, z1)) The order we found is given by the following interpretation: Polynomial interpretation : POL(+(x_1, x_2)) = [3] + [3]x_2 POL(+'(x_1, x_2)) = 0 POL(0) = [3] POL(SUM(x_1)) = x_1 POL(c1(x_1, x_2)) = x_1 + x_2 POL(c3(x_1)) = x_1 POL(s(x_1)) = [2] + x_1 POL(sum(x_1)) = [3] ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: sum(0) -> 0 sum(s(z0)) -> +(sum(z0), s(z0)) +(z0, 0) -> z0 +(z0, s(z1)) -> s(+(z0, z1)) Tuples: SUM(s(z0)) -> c1(+'(sum(z0), s(z0)), SUM(z0)) +'(z0, s(z1)) -> c3(+'(z0, z1)) S tuples: +'(z0, s(z1)) -> c3(+'(z0, z1)) K tuples: SUM(s(z0)) -> c1(+'(sum(z0), s(z0)), SUM(z0)) Defined Rule Symbols: sum_1, +_2 Defined Pair Symbols: SUM_1, +'_2 Compound Symbols: c1_2, c3_1 ---------------------------------------- (9) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. +'(z0, s(z1)) -> c3(+'(z0, z1)) We considered the (Usable) Rules:none And the Tuples: SUM(s(z0)) -> c1(+'(sum(z0), s(z0)), SUM(z0)) +'(z0, s(z1)) -> c3(+'(z0, z1)) The order we found is given by the following interpretation: Polynomial interpretation : POL(+(x_1, x_2)) = [1] + x_2 + [2]x_2^2 POL(+'(x_1, x_2)) = x_2 POL(0) = 0 POL(SUM(x_1)) = x_1^2 POL(c1(x_1, x_2)) = x_1 + x_2 POL(c3(x_1)) = x_1 POL(s(x_1)) = [1] + x_1 POL(sum(x_1)) = [2] + [2]x_1 + [2]x_1^2 ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules: sum(0) -> 0 sum(s(z0)) -> +(sum(z0), s(z0)) +(z0, 0) -> z0 +(z0, s(z1)) -> s(+(z0, z1)) Tuples: SUM(s(z0)) -> c1(+'(sum(z0), s(z0)), SUM(z0)) +'(z0, s(z1)) -> c3(+'(z0, z1)) S tuples:none K tuples: SUM(s(z0)) -> c1(+'(sum(z0), s(z0)), SUM(z0)) +'(z0, s(z1)) -> c3(+'(z0, z1)) Defined Rule Symbols: sum_1, +_2 Defined Pair Symbols: SUM_1, +'_2 Compound Symbols: c1_2, c3_1 ---------------------------------------- (11) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (12) BOUNDS(1, 1) ---------------------------------------- (13) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (14) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: sum(0) -> 0 sum(s(x)) -> +(sum(x), s(x)) +(x, 0) -> x +(x, s(y)) -> s(+(x, y)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (15) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence +(x, s(y)) ->^+ s(+(x, y)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [y / s(y)]. The result substitution is [ ]. ---------------------------------------- (16) Complex Obligation (BEST) ---------------------------------------- (17) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: sum(0) -> 0 sum(s(x)) -> +(sum(x), s(x)) +(x, 0) -> x +(x, s(y)) -> s(+(x, y)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (18) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (19) BOUNDS(n^1, INF) ---------------------------------------- (20) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: sum(0) -> 0 sum(s(x)) -> +(sum(x), s(x)) +(x, 0) -> x +(x, s(y)) -> s(+(x, y)) S is empty. Rewrite Strategy: FULL