/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) NestedDefinedSymbolProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (4) CpxTRS (5) CpxTrsMatchBoundsTAProof [FINISHED, 58 ms] (6) BOUNDS(1, n^1) (7) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTRS (9) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (10) typed CpxTrs (11) OrderProof [LOWER BOUND(ID), 0 ms] (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 470 ms] (14) BEST (15) proven lower bound (16) LowerBoundPropagationProof [FINISHED, 0 ms] (17) BOUNDS(n^1, INF) (18) typed CpxTrs (19) RewriteLemmaProof [LOWER BOUND(ID), 134 ms] (20) typed CpxTrs (21) RewriteLemmaProof [LOWER BOUND(ID), 89 ms] (22) typed CpxTrs (23) RewriteLemmaProof [LOWER BOUND(ID), 122 ms] (24) typed CpxTrs (25) RewriteLemmaProof [LOWER BOUND(ID), 64 ms] (26) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(p(0)) -> mark(0) active(p(s(X))) -> mark(X) active(leq(0, Y)) -> mark(true) active(leq(s(X), 0)) -> mark(false) active(leq(s(X), s(Y))) -> mark(leq(X, Y)) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(diff(X, Y)) -> mark(if(leq(X, Y), 0, s(diff(p(X), Y)))) active(p(X)) -> p(active(X)) active(s(X)) -> s(active(X)) active(leq(X1, X2)) -> leq(active(X1), X2) active(leq(X1, X2)) -> leq(X1, active(X2)) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) active(diff(X1, X2)) -> diff(active(X1), X2) active(diff(X1, X2)) -> diff(X1, active(X2)) p(mark(X)) -> mark(p(X)) s(mark(X)) -> mark(s(X)) leq(mark(X1), X2) -> mark(leq(X1, X2)) leq(X1, mark(X2)) -> mark(leq(X1, X2)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) diff(mark(X1), X2) -> mark(diff(X1, X2)) diff(X1, mark(X2)) -> mark(diff(X1, X2)) proper(p(X)) -> p(proper(X)) proper(0) -> ok(0) proper(s(X)) -> s(proper(X)) proper(leq(X1, X2)) -> leq(proper(X1), proper(X2)) proper(true) -> ok(true) proper(false) -> ok(false) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) proper(diff(X1, X2)) -> diff(proper(X1), proper(X2)) p(ok(X)) -> ok(p(X)) s(ok(X)) -> ok(s(X)) leq(ok(X1), ok(X2)) -> ok(leq(X1, X2)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) diff(ok(X1), ok(X2)) -> ok(diff(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) NestedDefinedSymbolProof (UPPER BOUND(ID)) The following defined symbols can occur below the 0th argument of top: proper, active The following defined symbols can occur below the 0th argument of proper: proper, active The following defined symbols can occur below the 0th argument of active: proper, active Hence, the left-hand sides of the following rules are not basic-reachable and can be removed: active(p(0)) -> mark(0) active(p(s(X))) -> mark(X) active(leq(0, Y)) -> mark(true) active(leq(s(X), 0)) -> mark(false) active(leq(s(X), s(Y))) -> mark(leq(X, Y)) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(diff(X, Y)) -> mark(if(leq(X, Y), 0, s(diff(p(X), Y)))) active(p(X)) -> p(active(X)) active(s(X)) -> s(active(X)) active(leq(X1, X2)) -> leq(active(X1), X2) active(leq(X1, X2)) -> leq(X1, active(X2)) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) active(diff(X1, X2)) -> diff(active(X1), X2) active(diff(X1, X2)) -> diff(X1, active(X2)) proper(p(X)) -> p(proper(X)) proper(s(X)) -> s(proper(X)) proper(leq(X1, X2)) -> leq(proper(X1), proper(X2)) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) proper(diff(X1, X2)) -> diff(proper(X1), proper(X2)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: p(mark(X)) -> mark(p(X)) s(mark(X)) -> mark(s(X)) leq(mark(X1), X2) -> mark(leq(X1, X2)) leq(X1, mark(X2)) -> mark(leq(X1, X2)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) diff(mark(X1), X2) -> mark(diff(X1, X2)) diff(X1, mark(X2)) -> mark(diff(X1, X2)) proper(0) -> ok(0) proper(true) -> ok(true) proper(false) -> ok(false) p(ok(X)) -> ok(p(X)) s(ok(X)) -> ok(s(X)) leq(ok(X1), ok(X2)) -> ok(leq(X1, X2)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) diff(ok(X1), ok(X2)) -> ok(diff(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: p(mark(X)) -> mark(p(X)) s(mark(X)) -> mark(s(X)) leq(mark(X1), X2) -> mark(leq(X1, X2)) leq(X1, mark(X2)) -> mark(leq(X1, X2)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) diff(mark(X1), X2) -> mark(diff(X1, X2)) diff(X1, mark(X2)) -> mark(diff(X1, X2)) proper(0) -> ok(0) proper(true) -> ok(true) proper(false) -> ok(false) p(ok(X)) -> ok(p(X)) s(ok(X)) -> ok(s(X)) leq(ok(X1), ok(X2)) -> ok(leq(X1, X2)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) diff(ok(X1), ok(X2)) -> ok(diff(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (5) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2, 3, 4, 5, 6, 7] transitions: mark0(0) -> 0 00() -> 0 ok0(0) -> 0 true0() -> 0 false0() -> 0 active0(0) -> 0 p0(0) -> 1 s0(0) -> 2 leq0(0, 0) -> 3 if0(0, 0, 0) -> 4 diff0(0, 0) -> 5 proper0(0) -> 6 top0(0) -> 7 p1(0) -> 8 mark1(8) -> 1 s1(0) -> 9 mark1(9) -> 2 leq1(0, 0) -> 10 mark1(10) -> 3 if1(0, 0, 0) -> 11 mark1(11) -> 4 diff1(0, 0) -> 12 mark1(12) -> 5 01() -> 13 ok1(13) -> 6 true1() -> 14 ok1(14) -> 6 false1() -> 15 ok1(15) -> 6 p1(0) -> 16 ok1(16) -> 1 s1(0) -> 17 ok1(17) -> 2 leq1(0, 0) -> 18 ok1(18) -> 3 if1(0, 0, 0) -> 19 ok1(19) -> 4 diff1(0, 0) -> 20 ok1(20) -> 5 proper1(0) -> 21 top1(21) -> 7 active1(0) -> 22 top1(22) -> 7 mark1(8) -> 8 mark1(8) -> 16 mark1(9) -> 9 mark1(9) -> 17 mark1(10) -> 10 mark1(10) -> 18 mark1(11) -> 11 mark1(11) -> 19 mark1(12) -> 12 mark1(12) -> 20 ok1(13) -> 21 ok1(14) -> 21 ok1(15) -> 21 ok1(16) -> 8 ok1(16) -> 16 ok1(17) -> 9 ok1(17) -> 17 ok1(18) -> 10 ok1(18) -> 18 ok1(19) -> 11 ok1(19) -> 19 ok1(20) -> 12 ok1(20) -> 20 active2(13) -> 23 top2(23) -> 7 active2(14) -> 23 active2(15) -> 23 ---------------------------------------- (6) BOUNDS(1, n^1) ---------------------------------------- (7) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (8) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(p(0')) -> mark(0') active(p(s(X))) -> mark(X) active(leq(0', Y)) -> mark(true) active(leq(s(X), 0')) -> mark(false) active(leq(s(X), s(Y))) -> mark(leq(X, Y)) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(diff(X, Y)) -> mark(if(leq(X, Y), 0', s(diff(p(X), Y)))) active(p(X)) -> p(active(X)) active(s(X)) -> s(active(X)) active(leq(X1, X2)) -> leq(active(X1), X2) active(leq(X1, X2)) -> leq(X1, active(X2)) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) active(diff(X1, X2)) -> diff(active(X1), X2) active(diff(X1, X2)) -> diff(X1, active(X2)) p(mark(X)) -> mark(p(X)) s(mark(X)) -> mark(s(X)) leq(mark(X1), X2) -> mark(leq(X1, X2)) leq(X1, mark(X2)) -> mark(leq(X1, X2)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) diff(mark(X1), X2) -> mark(diff(X1, X2)) diff(X1, mark(X2)) -> mark(diff(X1, X2)) proper(p(X)) -> p(proper(X)) proper(0') -> ok(0') proper(s(X)) -> s(proper(X)) proper(leq(X1, X2)) -> leq(proper(X1), proper(X2)) proper(true) -> ok(true) proper(false) -> ok(false) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) proper(diff(X1, X2)) -> diff(proper(X1), proper(X2)) p(ok(X)) -> ok(p(X)) s(ok(X)) -> ok(s(X)) leq(ok(X1), ok(X2)) -> ok(leq(X1, X2)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) diff(ok(X1), ok(X2)) -> ok(diff(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (9) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (10) Obligation: TRS: Rules: active(p(0')) -> mark(0') active(p(s(X))) -> mark(X) active(leq(0', Y)) -> mark(true) active(leq(s(X), 0')) -> mark(false) active(leq(s(X), s(Y))) -> mark(leq(X, Y)) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(diff(X, Y)) -> mark(if(leq(X, Y), 0', s(diff(p(X), Y)))) active(p(X)) -> p(active(X)) active(s(X)) -> s(active(X)) active(leq(X1, X2)) -> leq(active(X1), X2) active(leq(X1, X2)) -> leq(X1, active(X2)) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) active(diff(X1, X2)) -> diff(active(X1), X2) active(diff(X1, X2)) -> diff(X1, active(X2)) p(mark(X)) -> mark(p(X)) s(mark(X)) -> mark(s(X)) leq(mark(X1), X2) -> mark(leq(X1, X2)) leq(X1, mark(X2)) -> mark(leq(X1, X2)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) diff(mark(X1), X2) -> mark(diff(X1, X2)) diff(X1, mark(X2)) -> mark(diff(X1, X2)) proper(p(X)) -> p(proper(X)) proper(0') -> ok(0') proper(s(X)) -> s(proper(X)) proper(leq(X1, X2)) -> leq(proper(X1), proper(X2)) proper(true) -> ok(true) proper(false) -> ok(false) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) proper(diff(X1, X2)) -> diff(proper(X1), proper(X2)) p(ok(X)) -> ok(p(X)) s(ok(X)) -> ok(s(X)) leq(ok(X1), ok(X2)) -> ok(leq(X1, X2)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) diff(ok(X1), ok(X2)) -> ok(diff(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: 0':mark:true:false:ok -> 0':mark:true:false:ok p :: 0':mark:true:false:ok -> 0':mark:true:false:ok 0' :: 0':mark:true:false:ok mark :: 0':mark:true:false:ok -> 0':mark:true:false:ok s :: 0':mark:true:false:ok -> 0':mark:true:false:ok leq :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok true :: 0':mark:true:false:ok false :: 0':mark:true:false:ok if :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok diff :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok proper :: 0':mark:true:false:ok -> 0':mark:true:false:ok ok :: 0':mark:true:false:ok -> 0':mark:true:false:ok top :: 0':mark:true:false:ok -> top hole_0':mark:true:false:ok1_0 :: 0':mark:true:false:ok hole_top2_0 :: top gen_0':mark:true:false:ok3_0 :: Nat -> 0':mark:true:false:ok ---------------------------------------- (11) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: active, leq, if, s, diff, p, proper, top They will be analysed ascendingly in the following order: leq < active if < active s < active diff < active p < active active < top leq < proper if < proper s < proper diff < proper p < proper proper < top ---------------------------------------- (12) Obligation: TRS: Rules: active(p(0')) -> mark(0') active(p(s(X))) -> mark(X) active(leq(0', Y)) -> mark(true) active(leq(s(X), 0')) -> mark(false) active(leq(s(X), s(Y))) -> mark(leq(X, Y)) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(diff(X, Y)) -> mark(if(leq(X, Y), 0', s(diff(p(X), Y)))) active(p(X)) -> p(active(X)) active(s(X)) -> s(active(X)) active(leq(X1, X2)) -> leq(active(X1), X2) active(leq(X1, X2)) -> leq(X1, active(X2)) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) active(diff(X1, X2)) -> diff(active(X1), X2) active(diff(X1, X2)) -> diff(X1, active(X2)) p(mark(X)) -> mark(p(X)) s(mark(X)) -> mark(s(X)) leq(mark(X1), X2) -> mark(leq(X1, X2)) leq(X1, mark(X2)) -> mark(leq(X1, X2)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) diff(mark(X1), X2) -> mark(diff(X1, X2)) diff(X1, mark(X2)) -> mark(diff(X1, X2)) proper(p(X)) -> p(proper(X)) proper(0') -> ok(0') proper(s(X)) -> s(proper(X)) proper(leq(X1, X2)) -> leq(proper(X1), proper(X2)) proper(true) -> ok(true) proper(false) -> ok(false) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) proper(diff(X1, X2)) -> diff(proper(X1), proper(X2)) p(ok(X)) -> ok(p(X)) s(ok(X)) -> ok(s(X)) leq(ok(X1), ok(X2)) -> ok(leq(X1, X2)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) diff(ok(X1), ok(X2)) -> ok(diff(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: 0':mark:true:false:ok -> 0':mark:true:false:ok p :: 0':mark:true:false:ok -> 0':mark:true:false:ok 0' :: 0':mark:true:false:ok mark :: 0':mark:true:false:ok -> 0':mark:true:false:ok s :: 0':mark:true:false:ok -> 0':mark:true:false:ok leq :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok true :: 0':mark:true:false:ok false :: 0':mark:true:false:ok if :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok diff :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok proper :: 0':mark:true:false:ok -> 0':mark:true:false:ok ok :: 0':mark:true:false:ok -> 0':mark:true:false:ok top :: 0':mark:true:false:ok -> top hole_0':mark:true:false:ok1_0 :: 0':mark:true:false:ok hole_top2_0 :: top gen_0':mark:true:false:ok3_0 :: Nat -> 0':mark:true:false:ok Generator Equations: gen_0':mark:true:false:ok3_0(0) <=> 0' gen_0':mark:true:false:ok3_0(+(x, 1)) <=> mark(gen_0':mark:true:false:ok3_0(x)) The following defined symbols remain to be analysed: leq, active, if, s, diff, p, proper, top They will be analysed ascendingly in the following order: leq < active if < active s < active diff < active p < active active < top leq < proper if < proper s < proper diff < proper p < proper proper < top ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: leq(gen_0':mark:true:false:ok3_0(+(1, n5_0)), gen_0':mark:true:false:ok3_0(b)) -> *4_0, rt in Omega(n5_0) Induction Base: leq(gen_0':mark:true:false:ok3_0(+(1, 0)), gen_0':mark:true:false:ok3_0(b)) Induction Step: leq(gen_0':mark:true:false:ok3_0(+(1, +(n5_0, 1))), gen_0':mark:true:false:ok3_0(b)) ->_R^Omega(1) mark(leq(gen_0':mark:true:false:ok3_0(+(1, n5_0)), gen_0':mark:true:false:ok3_0(b))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Complex Obligation (BEST) ---------------------------------------- (15) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: active(p(0')) -> mark(0') active(p(s(X))) -> mark(X) active(leq(0', Y)) -> mark(true) active(leq(s(X), 0')) -> mark(false) active(leq(s(X), s(Y))) -> mark(leq(X, Y)) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(diff(X, Y)) -> mark(if(leq(X, Y), 0', s(diff(p(X), Y)))) active(p(X)) -> p(active(X)) active(s(X)) -> s(active(X)) active(leq(X1, X2)) -> leq(active(X1), X2) active(leq(X1, X2)) -> leq(X1, active(X2)) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) active(diff(X1, X2)) -> diff(active(X1), X2) active(diff(X1, X2)) -> diff(X1, active(X2)) p(mark(X)) -> mark(p(X)) s(mark(X)) -> mark(s(X)) leq(mark(X1), X2) -> mark(leq(X1, X2)) leq(X1, mark(X2)) -> mark(leq(X1, X2)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) diff(mark(X1), X2) -> mark(diff(X1, X2)) diff(X1, mark(X2)) -> mark(diff(X1, X2)) proper(p(X)) -> p(proper(X)) proper(0') -> ok(0') proper(s(X)) -> s(proper(X)) proper(leq(X1, X2)) -> leq(proper(X1), proper(X2)) proper(true) -> ok(true) proper(false) -> ok(false) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) proper(diff(X1, X2)) -> diff(proper(X1), proper(X2)) p(ok(X)) -> ok(p(X)) s(ok(X)) -> ok(s(X)) leq(ok(X1), ok(X2)) -> ok(leq(X1, X2)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) diff(ok(X1), ok(X2)) -> ok(diff(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: 0':mark:true:false:ok -> 0':mark:true:false:ok p :: 0':mark:true:false:ok -> 0':mark:true:false:ok 0' :: 0':mark:true:false:ok mark :: 0':mark:true:false:ok -> 0':mark:true:false:ok s :: 0':mark:true:false:ok -> 0':mark:true:false:ok leq :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok true :: 0':mark:true:false:ok false :: 0':mark:true:false:ok if :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok diff :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok proper :: 0':mark:true:false:ok -> 0':mark:true:false:ok ok :: 0':mark:true:false:ok -> 0':mark:true:false:ok top :: 0':mark:true:false:ok -> top hole_0':mark:true:false:ok1_0 :: 0':mark:true:false:ok hole_top2_0 :: top gen_0':mark:true:false:ok3_0 :: Nat -> 0':mark:true:false:ok Generator Equations: gen_0':mark:true:false:ok3_0(0) <=> 0' gen_0':mark:true:false:ok3_0(+(x, 1)) <=> mark(gen_0':mark:true:false:ok3_0(x)) The following defined symbols remain to be analysed: leq, active, if, s, diff, p, proper, top They will be analysed ascendingly in the following order: leq < active if < active s < active diff < active p < active active < top leq < proper if < proper s < proper diff < proper p < proper proper < top ---------------------------------------- (16) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (17) BOUNDS(n^1, INF) ---------------------------------------- (18) Obligation: TRS: Rules: active(p(0')) -> mark(0') active(p(s(X))) -> mark(X) active(leq(0', Y)) -> mark(true) active(leq(s(X), 0')) -> mark(false) active(leq(s(X), s(Y))) -> mark(leq(X, Y)) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(diff(X, Y)) -> mark(if(leq(X, Y), 0', s(diff(p(X), Y)))) active(p(X)) -> p(active(X)) active(s(X)) -> s(active(X)) active(leq(X1, X2)) -> leq(active(X1), X2) active(leq(X1, X2)) -> leq(X1, active(X2)) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) active(diff(X1, X2)) -> diff(active(X1), X2) active(diff(X1, X2)) -> diff(X1, active(X2)) p(mark(X)) -> mark(p(X)) s(mark(X)) -> mark(s(X)) leq(mark(X1), X2) -> mark(leq(X1, X2)) leq(X1, mark(X2)) -> mark(leq(X1, X2)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) diff(mark(X1), X2) -> mark(diff(X1, X2)) diff(X1, mark(X2)) -> mark(diff(X1, X2)) proper(p(X)) -> p(proper(X)) proper(0') -> ok(0') proper(s(X)) -> s(proper(X)) proper(leq(X1, X2)) -> leq(proper(X1), proper(X2)) proper(true) -> ok(true) proper(false) -> ok(false) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) proper(diff(X1, X2)) -> diff(proper(X1), proper(X2)) p(ok(X)) -> ok(p(X)) s(ok(X)) -> ok(s(X)) leq(ok(X1), ok(X2)) -> ok(leq(X1, X2)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) diff(ok(X1), ok(X2)) -> ok(diff(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: 0':mark:true:false:ok -> 0':mark:true:false:ok p :: 0':mark:true:false:ok -> 0':mark:true:false:ok 0' :: 0':mark:true:false:ok mark :: 0':mark:true:false:ok -> 0':mark:true:false:ok s :: 0':mark:true:false:ok -> 0':mark:true:false:ok leq :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok true :: 0':mark:true:false:ok false :: 0':mark:true:false:ok if :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok diff :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok proper :: 0':mark:true:false:ok -> 0':mark:true:false:ok ok :: 0':mark:true:false:ok -> 0':mark:true:false:ok top :: 0':mark:true:false:ok -> top hole_0':mark:true:false:ok1_0 :: 0':mark:true:false:ok hole_top2_0 :: top gen_0':mark:true:false:ok3_0 :: Nat -> 0':mark:true:false:ok Lemmas: leq(gen_0':mark:true:false:ok3_0(+(1, n5_0)), gen_0':mark:true:false:ok3_0(b)) -> *4_0, rt in Omega(n5_0) Generator Equations: gen_0':mark:true:false:ok3_0(0) <=> 0' gen_0':mark:true:false:ok3_0(+(x, 1)) <=> mark(gen_0':mark:true:false:ok3_0(x)) The following defined symbols remain to be analysed: if, active, s, diff, p, proper, top They will be analysed ascendingly in the following order: if < active s < active diff < active p < active active < top if < proper s < proper diff < proper p < proper proper < top ---------------------------------------- (19) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: if(gen_0':mark:true:false:ok3_0(+(1, n1157_0)), gen_0':mark:true:false:ok3_0(b), gen_0':mark:true:false:ok3_0(c)) -> *4_0, rt in Omega(n1157_0) Induction Base: if(gen_0':mark:true:false:ok3_0(+(1, 0)), gen_0':mark:true:false:ok3_0(b), gen_0':mark:true:false:ok3_0(c)) Induction Step: if(gen_0':mark:true:false:ok3_0(+(1, +(n1157_0, 1))), gen_0':mark:true:false:ok3_0(b), gen_0':mark:true:false:ok3_0(c)) ->_R^Omega(1) mark(if(gen_0':mark:true:false:ok3_0(+(1, n1157_0)), gen_0':mark:true:false:ok3_0(b), gen_0':mark:true:false:ok3_0(c))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (20) Obligation: TRS: Rules: active(p(0')) -> mark(0') active(p(s(X))) -> mark(X) active(leq(0', Y)) -> mark(true) active(leq(s(X), 0')) -> mark(false) active(leq(s(X), s(Y))) -> mark(leq(X, Y)) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(diff(X, Y)) -> mark(if(leq(X, Y), 0', s(diff(p(X), Y)))) active(p(X)) -> p(active(X)) active(s(X)) -> s(active(X)) active(leq(X1, X2)) -> leq(active(X1), X2) active(leq(X1, X2)) -> leq(X1, active(X2)) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) active(diff(X1, X2)) -> diff(active(X1), X2) active(diff(X1, X2)) -> diff(X1, active(X2)) p(mark(X)) -> mark(p(X)) s(mark(X)) -> mark(s(X)) leq(mark(X1), X2) -> mark(leq(X1, X2)) leq(X1, mark(X2)) -> mark(leq(X1, X2)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) diff(mark(X1), X2) -> mark(diff(X1, X2)) diff(X1, mark(X2)) -> mark(diff(X1, X2)) proper(p(X)) -> p(proper(X)) proper(0') -> ok(0') proper(s(X)) -> s(proper(X)) proper(leq(X1, X2)) -> leq(proper(X1), proper(X2)) proper(true) -> ok(true) proper(false) -> ok(false) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) proper(diff(X1, X2)) -> diff(proper(X1), proper(X2)) p(ok(X)) -> ok(p(X)) s(ok(X)) -> ok(s(X)) leq(ok(X1), ok(X2)) -> ok(leq(X1, X2)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) diff(ok(X1), ok(X2)) -> ok(diff(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: 0':mark:true:false:ok -> 0':mark:true:false:ok p :: 0':mark:true:false:ok -> 0':mark:true:false:ok 0' :: 0':mark:true:false:ok mark :: 0':mark:true:false:ok -> 0':mark:true:false:ok s :: 0':mark:true:false:ok -> 0':mark:true:false:ok leq :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok true :: 0':mark:true:false:ok false :: 0':mark:true:false:ok if :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok diff :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok proper :: 0':mark:true:false:ok -> 0':mark:true:false:ok ok :: 0':mark:true:false:ok -> 0':mark:true:false:ok top :: 0':mark:true:false:ok -> top hole_0':mark:true:false:ok1_0 :: 0':mark:true:false:ok hole_top2_0 :: top gen_0':mark:true:false:ok3_0 :: Nat -> 0':mark:true:false:ok Lemmas: leq(gen_0':mark:true:false:ok3_0(+(1, n5_0)), gen_0':mark:true:false:ok3_0(b)) -> *4_0, rt in Omega(n5_0) if(gen_0':mark:true:false:ok3_0(+(1, n1157_0)), gen_0':mark:true:false:ok3_0(b), gen_0':mark:true:false:ok3_0(c)) -> *4_0, rt in Omega(n1157_0) Generator Equations: gen_0':mark:true:false:ok3_0(0) <=> 0' gen_0':mark:true:false:ok3_0(+(x, 1)) <=> mark(gen_0':mark:true:false:ok3_0(x)) The following defined symbols remain to be analysed: s, active, diff, p, proper, top They will be analysed ascendingly in the following order: s < active diff < active p < active active < top s < proper diff < proper p < proper proper < top ---------------------------------------- (21) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: s(gen_0':mark:true:false:ok3_0(+(1, n3147_0))) -> *4_0, rt in Omega(n3147_0) Induction Base: s(gen_0':mark:true:false:ok3_0(+(1, 0))) Induction Step: s(gen_0':mark:true:false:ok3_0(+(1, +(n3147_0, 1)))) ->_R^Omega(1) mark(s(gen_0':mark:true:false:ok3_0(+(1, n3147_0)))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (22) Obligation: TRS: Rules: active(p(0')) -> mark(0') active(p(s(X))) -> mark(X) active(leq(0', Y)) -> mark(true) active(leq(s(X), 0')) -> mark(false) active(leq(s(X), s(Y))) -> mark(leq(X, Y)) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(diff(X, Y)) -> mark(if(leq(X, Y), 0', s(diff(p(X), Y)))) active(p(X)) -> p(active(X)) active(s(X)) -> s(active(X)) active(leq(X1, X2)) -> leq(active(X1), X2) active(leq(X1, X2)) -> leq(X1, active(X2)) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) active(diff(X1, X2)) -> diff(active(X1), X2) active(diff(X1, X2)) -> diff(X1, active(X2)) p(mark(X)) -> mark(p(X)) s(mark(X)) -> mark(s(X)) leq(mark(X1), X2) -> mark(leq(X1, X2)) leq(X1, mark(X2)) -> mark(leq(X1, X2)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) diff(mark(X1), X2) -> mark(diff(X1, X2)) diff(X1, mark(X2)) -> mark(diff(X1, X2)) proper(p(X)) -> p(proper(X)) proper(0') -> ok(0') proper(s(X)) -> s(proper(X)) proper(leq(X1, X2)) -> leq(proper(X1), proper(X2)) proper(true) -> ok(true) proper(false) -> ok(false) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) proper(diff(X1, X2)) -> diff(proper(X1), proper(X2)) p(ok(X)) -> ok(p(X)) s(ok(X)) -> ok(s(X)) leq(ok(X1), ok(X2)) -> ok(leq(X1, X2)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) diff(ok(X1), ok(X2)) -> ok(diff(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: 0':mark:true:false:ok -> 0':mark:true:false:ok p :: 0':mark:true:false:ok -> 0':mark:true:false:ok 0' :: 0':mark:true:false:ok mark :: 0':mark:true:false:ok -> 0':mark:true:false:ok s :: 0':mark:true:false:ok -> 0':mark:true:false:ok leq :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok true :: 0':mark:true:false:ok false :: 0':mark:true:false:ok if :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok diff :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok proper :: 0':mark:true:false:ok -> 0':mark:true:false:ok ok :: 0':mark:true:false:ok -> 0':mark:true:false:ok top :: 0':mark:true:false:ok -> top hole_0':mark:true:false:ok1_0 :: 0':mark:true:false:ok hole_top2_0 :: top gen_0':mark:true:false:ok3_0 :: Nat -> 0':mark:true:false:ok Lemmas: leq(gen_0':mark:true:false:ok3_0(+(1, n5_0)), gen_0':mark:true:false:ok3_0(b)) -> *4_0, rt in Omega(n5_0) if(gen_0':mark:true:false:ok3_0(+(1, n1157_0)), gen_0':mark:true:false:ok3_0(b), gen_0':mark:true:false:ok3_0(c)) -> *4_0, rt in Omega(n1157_0) s(gen_0':mark:true:false:ok3_0(+(1, n3147_0))) -> *4_0, rt in Omega(n3147_0) Generator Equations: gen_0':mark:true:false:ok3_0(0) <=> 0' gen_0':mark:true:false:ok3_0(+(x, 1)) <=> mark(gen_0':mark:true:false:ok3_0(x)) The following defined symbols remain to be analysed: diff, active, p, proper, top They will be analysed ascendingly in the following order: diff < active p < active active < top diff < proper p < proper proper < top ---------------------------------------- (23) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: diff(gen_0':mark:true:false:ok3_0(+(1, n3874_0)), gen_0':mark:true:false:ok3_0(b)) -> *4_0, rt in Omega(n3874_0) Induction Base: diff(gen_0':mark:true:false:ok3_0(+(1, 0)), gen_0':mark:true:false:ok3_0(b)) Induction Step: diff(gen_0':mark:true:false:ok3_0(+(1, +(n3874_0, 1))), gen_0':mark:true:false:ok3_0(b)) ->_R^Omega(1) mark(diff(gen_0':mark:true:false:ok3_0(+(1, n3874_0)), gen_0':mark:true:false:ok3_0(b))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (24) Obligation: TRS: Rules: active(p(0')) -> mark(0') active(p(s(X))) -> mark(X) active(leq(0', Y)) -> mark(true) active(leq(s(X), 0')) -> mark(false) active(leq(s(X), s(Y))) -> mark(leq(X, Y)) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(diff(X, Y)) -> mark(if(leq(X, Y), 0', s(diff(p(X), Y)))) active(p(X)) -> p(active(X)) active(s(X)) -> s(active(X)) active(leq(X1, X2)) -> leq(active(X1), X2) active(leq(X1, X2)) -> leq(X1, active(X2)) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) active(diff(X1, X2)) -> diff(active(X1), X2) active(diff(X1, X2)) -> diff(X1, active(X2)) p(mark(X)) -> mark(p(X)) s(mark(X)) -> mark(s(X)) leq(mark(X1), X2) -> mark(leq(X1, X2)) leq(X1, mark(X2)) -> mark(leq(X1, X2)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) diff(mark(X1), X2) -> mark(diff(X1, X2)) diff(X1, mark(X2)) -> mark(diff(X1, X2)) proper(p(X)) -> p(proper(X)) proper(0') -> ok(0') proper(s(X)) -> s(proper(X)) proper(leq(X1, X2)) -> leq(proper(X1), proper(X2)) proper(true) -> ok(true) proper(false) -> ok(false) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) proper(diff(X1, X2)) -> diff(proper(X1), proper(X2)) p(ok(X)) -> ok(p(X)) s(ok(X)) -> ok(s(X)) leq(ok(X1), ok(X2)) -> ok(leq(X1, X2)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) diff(ok(X1), ok(X2)) -> ok(diff(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: 0':mark:true:false:ok -> 0':mark:true:false:ok p :: 0':mark:true:false:ok -> 0':mark:true:false:ok 0' :: 0':mark:true:false:ok mark :: 0':mark:true:false:ok -> 0':mark:true:false:ok s :: 0':mark:true:false:ok -> 0':mark:true:false:ok leq :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok true :: 0':mark:true:false:ok false :: 0':mark:true:false:ok if :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok diff :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok proper :: 0':mark:true:false:ok -> 0':mark:true:false:ok ok :: 0':mark:true:false:ok -> 0':mark:true:false:ok top :: 0':mark:true:false:ok -> top hole_0':mark:true:false:ok1_0 :: 0':mark:true:false:ok hole_top2_0 :: top gen_0':mark:true:false:ok3_0 :: Nat -> 0':mark:true:false:ok Lemmas: leq(gen_0':mark:true:false:ok3_0(+(1, n5_0)), gen_0':mark:true:false:ok3_0(b)) -> *4_0, rt in Omega(n5_0) if(gen_0':mark:true:false:ok3_0(+(1, n1157_0)), gen_0':mark:true:false:ok3_0(b), gen_0':mark:true:false:ok3_0(c)) -> *4_0, rt in Omega(n1157_0) s(gen_0':mark:true:false:ok3_0(+(1, n3147_0))) -> *4_0, rt in Omega(n3147_0) diff(gen_0':mark:true:false:ok3_0(+(1, n3874_0)), gen_0':mark:true:false:ok3_0(b)) -> *4_0, rt in Omega(n3874_0) Generator Equations: gen_0':mark:true:false:ok3_0(0) <=> 0' gen_0':mark:true:false:ok3_0(+(x, 1)) <=> mark(gen_0':mark:true:false:ok3_0(x)) The following defined symbols remain to be analysed: p, active, proper, top They will be analysed ascendingly in the following order: p < active active < top p < proper proper < top ---------------------------------------- (25) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: p(gen_0':mark:true:false:ok3_0(+(1, n5944_0))) -> *4_0, rt in Omega(n5944_0) Induction Base: p(gen_0':mark:true:false:ok3_0(+(1, 0))) Induction Step: p(gen_0':mark:true:false:ok3_0(+(1, +(n5944_0, 1)))) ->_R^Omega(1) mark(p(gen_0':mark:true:false:ok3_0(+(1, n5944_0)))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (26) Obligation: TRS: Rules: active(p(0')) -> mark(0') active(p(s(X))) -> mark(X) active(leq(0', Y)) -> mark(true) active(leq(s(X), 0')) -> mark(false) active(leq(s(X), s(Y))) -> mark(leq(X, Y)) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(diff(X, Y)) -> mark(if(leq(X, Y), 0', s(diff(p(X), Y)))) active(p(X)) -> p(active(X)) active(s(X)) -> s(active(X)) active(leq(X1, X2)) -> leq(active(X1), X2) active(leq(X1, X2)) -> leq(X1, active(X2)) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) active(diff(X1, X2)) -> diff(active(X1), X2) active(diff(X1, X2)) -> diff(X1, active(X2)) p(mark(X)) -> mark(p(X)) s(mark(X)) -> mark(s(X)) leq(mark(X1), X2) -> mark(leq(X1, X2)) leq(X1, mark(X2)) -> mark(leq(X1, X2)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) diff(mark(X1), X2) -> mark(diff(X1, X2)) diff(X1, mark(X2)) -> mark(diff(X1, X2)) proper(p(X)) -> p(proper(X)) proper(0') -> ok(0') proper(s(X)) -> s(proper(X)) proper(leq(X1, X2)) -> leq(proper(X1), proper(X2)) proper(true) -> ok(true) proper(false) -> ok(false) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) proper(diff(X1, X2)) -> diff(proper(X1), proper(X2)) p(ok(X)) -> ok(p(X)) s(ok(X)) -> ok(s(X)) leq(ok(X1), ok(X2)) -> ok(leq(X1, X2)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) diff(ok(X1), ok(X2)) -> ok(diff(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: 0':mark:true:false:ok -> 0':mark:true:false:ok p :: 0':mark:true:false:ok -> 0':mark:true:false:ok 0' :: 0':mark:true:false:ok mark :: 0':mark:true:false:ok -> 0':mark:true:false:ok s :: 0':mark:true:false:ok -> 0':mark:true:false:ok leq :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok true :: 0':mark:true:false:ok false :: 0':mark:true:false:ok if :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok diff :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok proper :: 0':mark:true:false:ok -> 0':mark:true:false:ok ok :: 0':mark:true:false:ok -> 0':mark:true:false:ok top :: 0':mark:true:false:ok -> top hole_0':mark:true:false:ok1_0 :: 0':mark:true:false:ok hole_top2_0 :: top gen_0':mark:true:false:ok3_0 :: Nat -> 0':mark:true:false:ok Lemmas: leq(gen_0':mark:true:false:ok3_0(+(1, n5_0)), gen_0':mark:true:false:ok3_0(b)) -> *4_0, rt in Omega(n5_0) if(gen_0':mark:true:false:ok3_0(+(1, n1157_0)), gen_0':mark:true:false:ok3_0(b), gen_0':mark:true:false:ok3_0(c)) -> *4_0, rt in Omega(n1157_0) s(gen_0':mark:true:false:ok3_0(+(1, n3147_0))) -> *4_0, rt in Omega(n3147_0) diff(gen_0':mark:true:false:ok3_0(+(1, n3874_0)), gen_0':mark:true:false:ok3_0(b)) -> *4_0, rt in Omega(n3874_0) p(gen_0':mark:true:false:ok3_0(+(1, n5944_0))) -> *4_0, rt in Omega(n5944_0) Generator Equations: gen_0':mark:true:false:ok3_0(0) <=> 0' gen_0':mark:true:false:ok3_0(+(x, 1)) <=> mark(gen_0':mark:true:false:ok3_0(x)) The following defined symbols remain to be analysed: active, proper, top They will be analysed ascendingly in the following order: active < top proper < top