/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (2) TRS for Loop Detection (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (4) BEST (5) proven lower bound (6) LowerBoundPropagationProof [FINISHED, 0 ms] (7) BOUNDS(n^1, INF) (8) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: from(X) -> cons(X, n__from(s(X))) sel(0, cons(X, XS)) -> X sel(s(N), cons(X, XS)) -> sel(N, activate(XS)) minus(X, 0) -> 0 minus(s(X), s(Y)) -> minus(X, Y) quot(0, s(Y)) -> 0 quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) zWquot(XS, nil) -> nil zWquot(nil, XS) -> nil zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), n__zWquot(activate(XS), activate(YS))) from(X) -> n__from(X) zWquot(X1, X2) -> n__zWquot(X1, X2) activate(n__from(X)) -> from(X) activate(n__zWquot(X1, X2)) -> zWquot(X1, X2) activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (2) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: from(X) -> cons(X, n__from(s(X))) sel(0, cons(X, XS)) -> X sel(s(N), cons(X, XS)) -> sel(N, activate(XS)) minus(X, 0) -> 0 minus(s(X), s(Y)) -> minus(X, Y) quot(0, s(Y)) -> 0 quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) zWquot(XS, nil) -> nil zWquot(nil, XS) -> nil zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), n__zWquot(activate(XS), activate(YS))) from(X) -> n__from(X) zWquot(X1, X2) -> n__zWquot(X1, X2) activate(n__from(X)) -> from(X) activate(n__zWquot(X1, X2)) -> zWquot(X1, X2) activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence minus(s(X), s(Y)) ->^+ minus(X, Y) gives rise to a decreasing loop by considering the right hand sides subterm at position []. The pumping substitution is [X / s(X), Y / s(Y)]. The result substitution is [ ]. ---------------------------------------- (4) Complex Obligation (BEST) ---------------------------------------- (5) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: from(X) -> cons(X, n__from(s(X))) sel(0, cons(X, XS)) -> X sel(s(N), cons(X, XS)) -> sel(N, activate(XS)) minus(X, 0) -> 0 minus(s(X), s(Y)) -> minus(X, Y) quot(0, s(Y)) -> 0 quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) zWquot(XS, nil) -> nil zWquot(nil, XS) -> nil zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), n__zWquot(activate(XS), activate(YS))) from(X) -> n__from(X) zWquot(X1, X2) -> n__zWquot(X1, X2) activate(n__from(X)) -> from(X) activate(n__zWquot(X1, X2)) -> zWquot(X1, X2) activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (6) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (7) BOUNDS(n^1, INF) ---------------------------------------- (8) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: from(X) -> cons(X, n__from(s(X))) sel(0, cons(X, XS)) -> X sel(s(N), cons(X, XS)) -> sel(N, activate(XS)) minus(X, 0) -> 0 minus(s(X), s(Y)) -> minus(X, Y) quot(0, s(Y)) -> 0 quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) zWquot(XS, nil) -> nil zWquot(nil, XS) -> nil zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), n__zWquot(activate(XS), activate(YS))) from(X) -> n__from(X) zWquot(X1, X2) -> n__zWquot(X1, X2) activate(n__from(X)) -> from(X) activate(n__zWquot(X1, X2)) -> zWquot(X1, X2) activate(X) -> X S is empty. Rewrite Strategy: FULL