/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (2) TRS for Loop Detection (3) DecreasingLoopProof [LOWER BOUND(ID), 106 ms] (4) BEST (5) proven lower bound (6) LowerBoundPropagationProof [FINISHED, 0 ms] (7) BOUNDS(n^1, INF) (8) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: __(__(X, Y), Z) -> __(X, __(Y, Z)) __(X, nil) -> X __(nil, X) -> X and(tt, X) -> activate(X) isList(V) -> isNeList(activate(V)) isList(n__nil) -> tt isList(n____(V1, V2)) -> and(isList(activate(V1)), n__isList(activate(V2))) isNeList(V) -> isQid(activate(V)) isNeList(n____(V1, V2)) -> and(isList(activate(V1)), n__isNeList(activate(V2))) isNeList(n____(V1, V2)) -> and(isNeList(activate(V1)), n__isList(activate(V2))) isNePal(V) -> isQid(activate(V)) isNePal(n____(I, __(P, I))) -> and(isQid(activate(I)), n__isPal(activate(P))) isPal(V) -> isNePal(activate(V)) isPal(n__nil) -> tt isQid(n__a) -> tt isQid(n__e) -> tt isQid(n__i) -> tt isQid(n__o) -> tt isQid(n__u) -> tt nil -> n__nil __(X1, X2) -> n____(X1, X2) isList(X) -> n__isList(X) isNeList(X) -> n__isNeList(X) isPal(X) -> n__isPal(X) a -> n__a e -> n__e i -> n__i o -> n__o u -> n__u activate(n__nil) -> nil activate(n____(X1, X2)) -> __(X1, X2) activate(n__isList(X)) -> isList(X) activate(n__isNeList(X)) -> isNeList(X) activate(n__isPal(X)) -> isPal(X) activate(n__a) -> a activate(n__e) -> e activate(n__i) -> i activate(n__o) -> o activate(n__u) -> u activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (2) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: __(__(X, Y), Z) -> __(X, __(Y, Z)) __(X, nil) -> X __(nil, X) -> X and(tt, X) -> activate(X) isList(V) -> isNeList(activate(V)) isList(n__nil) -> tt isList(n____(V1, V2)) -> and(isList(activate(V1)), n__isList(activate(V2))) isNeList(V) -> isQid(activate(V)) isNeList(n____(V1, V2)) -> and(isList(activate(V1)), n__isNeList(activate(V2))) isNeList(n____(V1, V2)) -> and(isNeList(activate(V1)), n__isList(activate(V2))) isNePal(V) -> isQid(activate(V)) isNePal(n____(I, __(P, I))) -> and(isQid(activate(I)), n__isPal(activate(P))) isPal(V) -> isNePal(activate(V)) isPal(n__nil) -> tt isQid(n__a) -> tt isQid(n__e) -> tt isQid(n__i) -> tt isQid(n__o) -> tt isQid(n__u) -> tt nil -> n__nil __(X1, X2) -> n____(X1, X2) isList(X) -> n__isList(X) isNeList(X) -> n__isNeList(X) isPal(X) -> n__isPal(X) a -> n__a e -> n__e i -> n__i o -> n__o u -> n__u activate(n__nil) -> nil activate(n____(X1, X2)) -> __(X1, X2) activate(n__isList(X)) -> isList(X) activate(n__isNeList(X)) -> isNeList(X) activate(n__isPal(X)) -> isPal(X) activate(n__a) -> a activate(n__e) -> e activate(n__i) -> i activate(n__o) -> o activate(n__u) -> u activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence isList(n____(n__isList(X1_0), V2)) ->^+ and(isList(isList(X1_0)), n__isList(activate(V2))) gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0]. The pumping substitution is [X1_0 / n____(n__isList(X1_0), V2)]. The result substitution is [ ]. ---------------------------------------- (4) Complex Obligation (BEST) ---------------------------------------- (5) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: __(__(X, Y), Z) -> __(X, __(Y, Z)) __(X, nil) -> X __(nil, X) -> X and(tt, X) -> activate(X) isList(V) -> isNeList(activate(V)) isList(n__nil) -> tt isList(n____(V1, V2)) -> and(isList(activate(V1)), n__isList(activate(V2))) isNeList(V) -> isQid(activate(V)) isNeList(n____(V1, V2)) -> and(isList(activate(V1)), n__isNeList(activate(V2))) isNeList(n____(V1, V2)) -> and(isNeList(activate(V1)), n__isList(activate(V2))) isNePal(V) -> isQid(activate(V)) isNePal(n____(I, __(P, I))) -> and(isQid(activate(I)), n__isPal(activate(P))) isPal(V) -> isNePal(activate(V)) isPal(n__nil) -> tt isQid(n__a) -> tt isQid(n__e) -> tt isQid(n__i) -> tt isQid(n__o) -> tt isQid(n__u) -> tt nil -> n__nil __(X1, X2) -> n____(X1, X2) isList(X) -> n__isList(X) isNeList(X) -> n__isNeList(X) isPal(X) -> n__isPal(X) a -> n__a e -> n__e i -> n__i o -> n__o u -> n__u activate(n__nil) -> nil activate(n____(X1, X2)) -> __(X1, X2) activate(n__isList(X)) -> isList(X) activate(n__isNeList(X)) -> isNeList(X) activate(n__isPal(X)) -> isPal(X) activate(n__a) -> a activate(n__e) -> e activate(n__i) -> i activate(n__o) -> o activate(n__u) -> u activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (6) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (7) BOUNDS(n^1, INF) ---------------------------------------- (8) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: __(__(X, Y), Z) -> __(X, __(Y, Z)) __(X, nil) -> X __(nil, X) -> X and(tt, X) -> activate(X) isList(V) -> isNeList(activate(V)) isList(n__nil) -> tt isList(n____(V1, V2)) -> and(isList(activate(V1)), n__isList(activate(V2))) isNeList(V) -> isQid(activate(V)) isNeList(n____(V1, V2)) -> and(isList(activate(V1)), n__isNeList(activate(V2))) isNeList(n____(V1, V2)) -> and(isNeList(activate(V1)), n__isList(activate(V2))) isNePal(V) -> isQid(activate(V)) isNePal(n____(I, __(P, I))) -> and(isQid(activate(I)), n__isPal(activate(P))) isPal(V) -> isNePal(activate(V)) isPal(n__nil) -> tt isQid(n__a) -> tt isQid(n__e) -> tt isQid(n__i) -> tt isQid(n__o) -> tt isQid(n__u) -> tt nil -> n__nil __(X1, X2) -> n____(X1, X2) isList(X) -> n__isList(X) isNeList(X) -> n__isNeList(X) isPal(X) -> n__isPal(X) a -> n__a e -> n__e i -> n__i o -> n__o u -> n__u activate(n__nil) -> nil activate(n____(X1, X2)) -> __(X1, X2) activate(n__isList(X)) -> isList(X) activate(n__isNeList(X)) -> isNeList(X) activate(n__isPal(X)) -> isPal(X) activate(n__a) -> a activate(n__e) -> e activate(n__i) -> i activate(n__o) -> o activate(n__u) -> u activate(X) -> X S is empty. Rewrite Strategy: FULL