/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) NestedDefinedSymbolProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (4) CpxTRS (5) CpxTrsMatchBoundsProof [FINISHED, 0 ms] (6) BOUNDS(1, n^1) (7) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTRS (9) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (10) typed CpxTrs (11) OrderProof [LOWER BOUND(ID), 0 ms] (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 453 ms] (14) BEST (15) proven lower bound (16) LowerBoundPropagationProof [FINISHED, 0 ms] (17) BOUNDS(n^1, INF) (18) typed CpxTrs (19) RewriteLemmaProof [LOWER BOUND(ID), 87 ms] (20) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(f(f(X))) -> mark(c(f(g(f(X))))) active(c(X)) -> mark(d(X)) active(h(X)) -> mark(c(d(X))) active(f(X)) -> f(active(X)) active(h(X)) -> h(active(X)) f(mark(X)) -> mark(f(X)) h(mark(X)) -> mark(h(X)) proper(f(X)) -> f(proper(X)) proper(c(X)) -> c(proper(X)) proper(g(X)) -> g(proper(X)) proper(d(X)) -> d(proper(X)) proper(h(X)) -> h(proper(X)) f(ok(X)) -> ok(f(X)) c(ok(X)) -> ok(c(X)) g(ok(X)) -> ok(g(X)) d(ok(X)) -> ok(d(X)) h(ok(X)) -> ok(h(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) NestedDefinedSymbolProof (UPPER BOUND(ID)) The following defined symbols can occur below the 0th argument of top: proper, active The following defined symbols can occur below the 0th argument of proper: proper, active The following defined symbols can occur below the 0th argument of active: proper, active Hence, the left-hand sides of the following rules are not basic-reachable and can be removed: active(f(f(X))) -> mark(c(f(g(f(X))))) active(c(X)) -> mark(d(X)) active(h(X)) -> mark(c(d(X))) active(f(X)) -> f(active(X)) active(h(X)) -> h(active(X)) proper(f(X)) -> f(proper(X)) proper(c(X)) -> c(proper(X)) proper(g(X)) -> g(proper(X)) proper(d(X)) -> d(proper(X)) proper(h(X)) -> h(proper(X)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(mark(X)) -> mark(f(X)) h(mark(X)) -> mark(h(X)) f(ok(X)) -> ok(f(X)) c(ok(X)) -> ok(c(X)) g(ok(X)) -> ok(g(X)) d(ok(X)) -> ok(d(X)) h(ok(X)) -> ok(h(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(mark(X)) -> mark(f(X)) h(mark(X)) -> mark(h(X)) f(ok(X)) -> ok(f(X)) c(ok(X)) -> ok(c(X)) g(ok(X)) -> ok(g(X)) d(ok(X)) -> ok(d(X)) h(ok(X)) -> ok(h(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (5) CpxTrsMatchBoundsProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match Bound [MATCHBOUNDS1,MATCHBOUNDS2] of 1. The certificate found is represented by the following graph. "[31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41] {(31,32,[f_1|0, h_1|0, c_1|0, g_1|0, d_1|0, top_1|0]), (31,33,[mark_1|1]), (31,34,[ok_1|1]), (31,35,[mark_1|1]), (31,36,[ok_1|1]), (31,37,[ok_1|1]), (31,38,[ok_1|1]), (31,39,[ok_1|1]), (31,40,[top_1|1]), (31,41,[top_1|1]), (32,32,[mark_1|0, ok_1|0, proper_1|0, active_1|0]), (33,32,[f_1|1]), (33,33,[mark_1|1]), (33,34,[ok_1|1]), (34,32,[f_1|1]), (34,33,[mark_1|1]), (34,34,[ok_1|1]), (35,32,[h_1|1]), (35,35,[mark_1|1]), (35,36,[ok_1|1]), (36,32,[h_1|1]), (36,35,[mark_1|1]), (36,36,[ok_1|1]), (37,32,[c_1|1]), (37,37,[ok_1|1]), (38,32,[g_1|1]), (38,38,[ok_1|1]), (39,32,[d_1|1]), (39,39,[ok_1|1]), (40,32,[proper_1|1]), (41,32,[active_1|1])}" ---------------------------------------- (6) BOUNDS(1, n^1) ---------------------------------------- (7) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (8) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(f(f(X))) -> mark(c(f(g(f(X))))) active(c(X)) -> mark(d(X)) active(h(X)) -> mark(c(d(X))) active(f(X)) -> f(active(X)) active(h(X)) -> h(active(X)) f(mark(X)) -> mark(f(X)) h(mark(X)) -> mark(h(X)) proper(f(X)) -> f(proper(X)) proper(c(X)) -> c(proper(X)) proper(g(X)) -> g(proper(X)) proper(d(X)) -> d(proper(X)) proper(h(X)) -> h(proper(X)) f(ok(X)) -> ok(f(X)) c(ok(X)) -> ok(c(X)) g(ok(X)) -> ok(g(X)) d(ok(X)) -> ok(d(X)) h(ok(X)) -> ok(h(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (9) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (10) Obligation: TRS: Rules: active(f(f(X))) -> mark(c(f(g(f(X))))) active(c(X)) -> mark(d(X)) active(h(X)) -> mark(c(d(X))) active(f(X)) -> f(active(X)) active(h(X)) -> h(active(X)) f(mark(X)) -> mark(f(X)) h(mark(X)) -> mark(h(X)) proper(f(X)) -> f(proper(X)) proper(c(X)) -> c(proper(X)) proper(g(X)) -> g(proper(X)) proper(d(X)) -> d(proper(X)) proper(h(X)) -> h(proper(X)) f(ok(X)) -> ok(f(X)) c(ok(X)) -> ok(c(X)) g(ok(X)) -> ok(g(X)) d(ok(X)) -> ok(d(X)) h(ok(X)) -> ok(h(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: mark:ok -> mark:ok f :: mark:ok -> mark:ok mark :: mark:ok -> mark:ok c :: mark:ok -> mark:ok g :: mark:ok -> mark:ok d :: mark:ok -> mark:ok h :: mark:ok -> mark:ok proper :: mark:ok -> mark:ok ok :: mark:ok -> mark:ok top :: mark:ok -> top hole_mark:ok1_0 :: mark:ok hole_top2_0 :: top gen_mark:ok3_0 :: Nat -> mark:ok ---------------------------------------- (11) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: active, c, f, g, d, h, proper, top They will be analysed ascendingly in the following order: c < active f < active g < active d < active h < active active < top c < proper f < proper g < proper d < proper h < proper proper < top ---------------------------------------- (12) Obligation: TRS: Rules: active(f(f(X))) -> mark(c(f(g(f(X))))) active(c(X)) -> mark(d(X)) active(h(X)) -> mark(c(d(X))) active(f(X)) -> f(active(X)) active(h(X)) -> h(active(X)) f(mark(X)) -> mark(f(X)) h(mark(X)) -> mark(h(X)) proper(f(X)) -> f(proper(X)) proper(c(X)) -> c(proper(X)) proper(g(X)) -> g(proper(X)) proper(d(X)) -> d(proper(X)) proper(h(X)) -> h(proper(X)) f(ok(X)) -> ok(f(X)) c(ok(X)) -> ok(c(X)) g(ok(X)) -> ok(g(X)) d(ok(X)) -> ok(d(X)) h(ok(X)) -> ok(h(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: mark:ok -> mark:ok f :: mark:ok -> mark:ok mark :: mark:ok -> mark:ok c :: mark:ok -> mark:ok g :: mark:ok -> mark:ok d :: mark:ok -> mark:ok h :: mark:ok -> mark:ok proper :: mark:ok -> mark:ok ok :: mark:ok -> mark:ok top :: mark:ok -> top hole_mark:ok1_0 :: mark:ok hole_top2_0 :: top gen_mark:ok3_0 :: Nat -> mark:ok Generator Equations: gen_mark:ok3_0(0) <=> hole_mark:ok1_0 gen_mark:ok3_0(+(x, 1)) <=> mark(gen_mark:ok3_0(x)) The following defined symbols remain to be analysed: c, active, f, g, d, h, proper, top They will be analysed ascendingly in the following order: c < active f < active g < active d < active h < active active < top c < proper f < proper g < proper d < proper h < proper proper < top ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: f(gen_mark:ok3_0(+(1, n9_0))) -> *4_0, rt in Omega(n9_0) Induction Base: f(gen_mark:ok3_0(+(1, 0))) Induction Step: f(gen_mark:ok3_0(+(1, +(n9_0, 1)))) ->_R^Omega(1) mark(f(gen_mark:ok3_0(+(1, n9_0)))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Complex Obligation (BEST) ---------------------------------------- (15) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: active(f(f(X))) -> mark(c(f(g(f(X))))) active(c(X)) -> mark(d(X)) active(h(X)) -> mark(c(d(X))) active(f(X)) -> f(active(X)) active(h(X)) -> h(active(X)) f(mark(X)) -> mark(f(X)) h(mark(X)) -> mark(h(X)) proper(f(X)) -> f(proper(X)) proper(c(X)) -> c(proper(X)) proper(g(X)) -> g(proper(X)) proper(d(X)) -> d(proper(X)) proper(h(X)) -> h(proper(X)) f(ok(X)) -> ok(f(X)) c(ok(X)) -> ok(c(X)) g(ok(X)) -> ok(g(X)) d(ok(X)) -> ok(d(X)) h(ok(X)) -> ok(h(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: mark:ok -> mark:ok f :: mark:ok -> mark:ok mark :: mark:ok -> mark:ok c :: mark:ok -> mark:ok g :: mark:ok -> mark:ok d :: mark:ok -> mark:ok h :: mark:ok -> mark:ok proper :: mark:ok -> mark:ok ok :: mark:ok -> mark:ok top :: mark:ok -> top hole_mark:ok1_0 :: mark:ok hole_top2_0 :: top gen_mark:ok3_0 :: Nat -> mark:ok Generator Equations: gen_mark:ok3_0(0) <=> hole_mark:ok1_0 gen_mark:ok3_0(+(x, 1)) <=> mark(gen_mark:ok3_0(x)) The following defined symbols remain to be analysed: f, active, g, d, h, proper, top They will be analysed ascendingly in the following order: f < active g < active d < active h < active active < top f < proper g < proper d < proper h < proper proper < top ---------------------------------------- (16) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (17) BOUNDS(n^1, INF) ---------------------------------------- (18) Obligation: TRS: Rules: active(f(f(X))) -> mark(c(f(g(f(X))))) active(c(X)) -> mark(d(X)) active(h(X)) -> mark(c(d(X))) active(f(X)) -> f(active(X)) active(h(X)) -> h(active(X)) f(mark(X)) -> mark(f(X)) h(mark(X)) -> mark(h(X)) proper(f(X)) -> f(proper(X)) proper(c(X)) -> c(proper(X)) proper(g(X)) -> g(proper(X)) proper(d(X)) -> d(proper(X)) proper(h(X)) -> h(proper(X)) f(ok(X)) -> ok(f(X)) c(ok(X)) -> ok(c(X)) g(ok(X)) -> ok(g(X)) d(ok(X)) -> ok(d(X)) h(ok(X)) -> ok(h(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: mark:ok -> mark:ok f :: mark:ok -> mark:ok mark :: mark:ok -> mark:ok c :: mark:ok -> mark:ok g :: mark:ok -> mark:ok d :: mark:ok -> mark:ok h :: mark:ok -> mark:ok proper :: mark:ok -> mark:ok ok :: mark:ok -> mark:ok top :: mark:ok -> top hole_mark:ok1_0 :: mark:ok hole_top2_0 :: top gen_mark:ok3_0 :: Nat -> mark:ok Lemmas: f(gen_mark:ok3_0(+(1, n9_0))) -> *4_0, rt in Omega(n9_0) Generator Equations: gen_mark:ok3_0(0) <=> hole_mark:ok1_0 gen_mark:ok3_0(+(x, 1)) <=> mark(gen_mark:ok3_0(x)) The following defined symbols remain to be analysed: g, active, d, h, proper, top They will be analysed ascendingly in the following order: g < active d < active h < active active < top g < proper d < proper h < proper proper < top ---------------------------------------- (19) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: h(gen_mark:ok3_0(+(1, n347_0))) -> *4_0, rt in Omega(n347_0) Induction Base: h(gen_mark:ok3_0(+(1, 0))) Induction Step: h(gen_mark:ok3_0(+(1, +(n347_0, 1)))) ->_R^Omega(1) mark(h(gen_mark:ok3_0(+(1, n347_0)))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (20) Obligation: TRS: Rules: active(f(f(X))) -> mark(c(f(g(f(X))))) active(c(X)) -> mark(d(X)) active(h(X)) -> mark(c(d(X))) active(f(X)) -> f(active(X)) active(h(X)) -> h(active(X)) f(mark(X)) -> mark(f(X)) h(mark(X)) -> mark(h(X)) proper(f(X)) -> f(proper(X)) proper(c(X)) -> c(proper(X)) proper(g(X)) -> g(proper(X)) proper(d(X)) -> d(proper(X)) proper(h(X)) -> h(proper(X)) f(ok(X)) -> ok(f(X)) c(ok(X)) -> ok(c(X)) g(ok(X)) -> ok(g(X)) d(ok(X)) -> ok(d(X)) h(ok(X)) -> ok(h(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: mark:ok -> mark:ok f :: mark:ok -> mark:ok mark :: mark:ok -> mark:ok c :: mark:ok -> mark:ok g :: mark:ok -> mark:ok d :: mark:ok -> mark:ok h :: mark:ok -> mark:ok proper :: mark:ok -> mark:ok ok :: mark:ok -> mark:ok top :: mark:ok -> top hole_mark:ok1_0 :: mark:ok hole_top2_0 :: top gen_mark:ok3_0 :: Nat -> mark:ok Lemmas: f(gen_mark:ok3_0(+(1, n9_0))) -> *4_0, rt in Omega(n9_0) h(gen_mark:ok3_0(+(1, n347_0))) -> *4_0, rt in Omega(n347_0) Generator Equations: gen_mark:ok3_0(0) <=> hole_mark:ok1_0 gen_mark:ok3_0(+(x, 1)) <=> mark(gen_mark:ok3_0(x)) The following defined symbols remain to be analysed: active, proper, top They will be analysed ascendingly in the following order: active < top proper < top