/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 210 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 52 ms] (14) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: fib(N) -> sel(N, fib1(s(0), s(0))) fib1(X, Y) -> cons(X, n__fib1(Y, add(X, Y))) add(0, X) -> X add(s(X), Y) -> s(add(X, Y)) sel(0, cons(X, XS)) -> X sel(s(N), cons(X, XS)) -> sel(N, activate(XS)) fib1(X1, X2) -> n__fib1(X1, X2) activate(n__fib1(X1, X2)) -> fib1(X1, X2) activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: fib(N) -> sel(N, fib1(s(0'), s(0'))) fib1(X, Y) -> cons(X, n__fib1(Y, add(X, Y))) add(0', X) -> X add(s(X), Y) -> s(add(X, Y)) sel(0', cons(X, XS)) -> X sel(s(N), cons(X, XS)) -> sel(N, activate(XS)) fib1(X1, X2) -> n__fib1(X1, X2) activate(n__fib1(X1, X2)) -> fib1(X1, X2) activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: fib(N) -> sel(N, fib1(s(0'), s(0'))) fib1(X, Y) -> cons(X, n__fib1(Y, add(X, Y))) add(0', X) -> X add(s(X), Y) -> s(add(X, Y)) sel(0', cons(X, XS)) -> X sel(s(N), cons(X, XS)) -> sel(N, activate(XS)) fib1(X1, X2) -> n__fib1(X1, X2) activate(n__fib1(X1, X2)) -> fib1(X1, X2) activate(X) -> X Types: fib :: 0':s -> 0':s sel :: 0':s -> n__fib1:cons -> 0':s fib1 :: 0':s -> 0':s -> n__fib1:cons s :: 0':s -> 0':s 0' :: 0':s cons :: 0':s -> n__fib1:cons -> n__fib1:cons n__fib1 :: 0':s -> 0':s -> n__fib1:cons add :: 0':s -> 0':s -> 0':s activate :: n__fib1:cons -> n__fib1:cons hole_0':s1_0 :: 0':s hole_n__fib1:cons2_0 :: n__fib1:cons gen_0':s3_0 :: Nat -> 0':s gen_n__fib1:cons4_0 :: Nat -> n__fib1:cons ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: sel, add ---------------------------------------- (6) Obligation: TRS: Rules: fib(N) -> sel(N, fib1(s(0'), s(0'))) fib1(X, Y) -> cons(X, n__fib1(Y, add(X, Y))) add(0', X) -> X add(s(X), Y) -> s(add(X, Y)) sel(0', cons(X, XS)) -> X sel(s(N), cons(X, XS)) -> sel(N, activate(XS)) fib1(X1, X2) -> n__fib1(X1, X2) activate(n__fib1(X1, X2)) -> fib1(X1, X2) activate(X) -> X Types: fib :: 0':s -> 0':s sel :: 0':s -> n__fib1:cons -> 0':s fib1 :: 0':s -> 0':s -> n__fib1:cons s :: 0':s -> 0':s 0' :: 0':s cons :: 0':s -> n__fib1:cons -> n__fib1:cons n__fib1 :: 0':s -> 0':s -> n__fib1:cons add :: 0':s -> 0':s -> 0':s activate :: n__fib1:cons -> n__fib1:cons hole_0':s1_0 :: 0':s hole_n__fib1:cons2_0 :: n__fib1:cons gen_0':s3_0 :: Nat -> 0':s gen_n__fib1:cons4_0 :: Nat -> n__fib1:cons Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) gen_n__fib1:cons4_0(0) <=> n__fib1(0', 0') gen_n__fib1:cons4_0(+(x, 1)) <=> cons(0', gen_n__fib1:cons4_0(x)) The following defined symbols remain to be analysed: sel, add ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: sel(gen_0':s3_0(n6_0), gen_n__fib1:cons4_0(1)) -> gen_0':s3_0(0), rt in Omega(1 + n6_0) Induction Base: sel(gen_0':s3_0(0), gen_n__fib1:cons4_0(1)) ->_R^Omega(1) 0' Induction Step: sel(gen_0':s3_0(+(n6_0, 1)), gen_n__fib1:cons4_0(1)) ->_R^Omega(1) sel(gen_0':s3_0(n6_0), activate(gen_n__fib1:cons4_0(0))) ->_R^Omega(1) sel(gen_0':s3_0(n6_0), fib1(0', 0')) ->_R^Omega(1) sel(gen_0':s3_0(n6_0), cons(0', n__fib1(0', add(0', 0')))) ->_R^Omega(1) sel(gen_0':s3_0(n6_0), cons(0', n__fib1(0', 0'))) ->_IH gen_0':s3_0(0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: fib(N) -> sel(N, fib1(s(0'), s(0'))) fib1(X, Y) -> cons(X, n__fib1(Y, add(X, Y))) add(0', X) -> X add(s(X), Y) -> s(add(X, Y)) sel(0', cons(X, XS)) -> X sel(s(N), cons(X, XS)) -> sel(N, activate(XS)) fib1(X1, X2) -> n__fib1(X1, X2) activate(n__fib1(X1, X2)) -> fib1(X1, X2) activate(X) -> X Types: fib :: 0':s -> 0':s sel :: 0':s -> n__fib1:cons -> 0':s fib1 :: 0':s -> 0':s -> n__fib1:cons s :: 0':s -> 0':s 0' :: 0':s cons :: 0':s -> n__fib1:cons -> n__fib1:cons n__fib1 :: 0':s -> 0':s -> n__fib1:cons add :: 0':s -> 0':s -> 0':s activate :: n__fib1:cons -> n__fib1:cons hole_0':s1_0 :: 0':s hole_n__fib1:cons2_0 :: n__fib1:cons gen_0':s3_0 :: Nat -> 0':s gen_n__fib1:cons4_0 :: Nat -> n__fib1:cons Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) gen_n__fib1:cons4_0(0) <=> n__fib1(0', 0') gen_n__fib1:cons4_0(+(x, 1)) <=> cons(0', gen_n__fib1:cons4_0(x)) The following defined symbols remain to be analysed: sel, add ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: fib(N) -> sel(N, fib1(s(0'), s(0'))) fib1(X, Y) -> cons(X, n__fib1(Y, add(X, Y))) add(0', X) -> X add(s(X), Y) -> s(add(X, Y)) sel(0', cons(X, XS)) -> X sel(s(N), cons(X, XS)) -> sel(N, activate(XS)) fib1(X1, X2) -> n__fib1(X1, X2) activate(n__fib1(X1, X2)) -> fib1(X1, X2) activate(X) -> X Types: fib :: 0':s -> 0':s sel :: 0':s -> n__fib1:cons -> 0':s fib1 :: 0':s -> 0':s -> n__fib1:cons s :: 0':s -> 0':s 0' :: 0':s cons :: 0':s -> n__fib1:cons -> n__fib1:cons n__fib1 :: 0':s -> 0':s -> n__fib1:cons add :: 0':s -> 0':s -> 0':s activate :: n__fib1:cons -> n__fib1:cons hole_0':s1_0 :: 0':s hole_n__fib1:cons2_0 :: n__fib1:cons gen_0':s3_0 :: Nat -> 0':s gen_n__fib1:cons4_0 :: Nat -> n__fib1:cons Lemmas: sel(gen_0':s3_0(n6_0), gen_n__fib1:cons4_0(1)) -> gen_0':s3_0(0), rt in Omega(1 + n6_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) gen_n__fib1:cons4_0(0) <=> n__fib1(0', 0') gen_n__fib1:cons4_0(+(x, 1)) <=> cons(0', gen_n__fib1:cons4_0(x)) The following defined symbols remain to be analysed: add ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: add(gen_0':s3_0(n315_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n315_0, b)), rt in Omega(1 + n315_0) Induction Base: add(gen_0':s3_0(0), gen_0':s3_0(b)) ->_R^Omega(1) gen_0':s3_0(b) Induction Step: add(gen_0':s3_0(+(n315_0, 1)), gen_0':s3_0(b)) ->_R^Omega(1) s(add(gen_0':s3_0(n315_0), gen_0':s3_0(b))) ->_IH s(gen_0':s3_0(+(b, c316_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) BOUNDS(1, INF)