/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) NestedDefinedSymbolProof [UPPER BOUND(ID), 15 ms] (2) CpxTRS (3) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (4) CpxTRS (5) CpxTrsMatchBoundsTAProof [FINISHED, 544 ms] (6) BOUNDS(1, n^1) (7) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (8) TRS for Loop Detection (9) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (10) BEST (11) proven lower bound (12) LowerBoundPropagationProof [FINISHED, 0 ms] (13) BOUNDS(n^1, INF) (14) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(U11(tt, V1, V2)) -> mark(U12(isNat(V1), V2)) active(U12(tt, V2)) -> mark(U13(isNat(V2))) active(U13(tt)) -> mark(tt) active(U21(tt, V1)) -> mark(U22(isNat(V1))) active(U22(tt)) -> mark(tt) active(U31(tt, V1, V2)) -> mark(U32(isNat(V1), V2)) active(U32(tt, V2)) -> mark(U33(isNat(V2))) active(U33(tt)) -> mark(tt) active(U41(tt, N)) -> mark(N) active(U51(tt, M, N)) -> mark(s(plus(N, M))) active(U61(tt)) -> mark(0) active(U71(tt, M, N)) -> mark(plus(x(N, M), N)) active(and(tt, X)) -> mark(X) active(isNat(0)) -> mark(tt) active(isNat(plus(V1, V2))) -> mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)) active(isNat(s(V1))) -> mark(U21(isNatKind(V1), V1)) active(isNat(x(V1, V2))) -> mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2)) active(isNatKind(0)) -> mark(tt) active(isNatKind(plus(V1, V2))) -> mark(and(isNatKind(V1), isNatKind(V2))) active(isNatKind(s(V1))) -> mark(isNatKind(V1)) active(isNatKind(x(V1, V2))) -> mark(and(isNatKind(V1), isNatKind(V2))) active(plus(N, 0)) -> mark(U41(and(isNat(N), isNatKind(N)), N)) active(plus(N, s(M))) -> mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)) active(x(N, 0)) -> mark(U61(and(isNat(N), isNatKind(N)))) active(x(N, s(M))) -> mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)) active(U11(X1, X2, X3)) -> U11(active(X1), X2, X3) active(U12(X1, X2)) -> U12(active(X1), X2) active(U13(X)) -> U13(active(X)) active(U21(X1, X2)) -> U21(active(X1), X2) active(U22(X)) -> U22(active(X)) active(U31(X1, X2, X3)) -> U31(active(X1), X2, X3) active(U32(X1, X2)) -> U32(active(X1), X2) active(U33(X)) -> U33(active(X)) active(U41(X1, X2)) -> U41(active(X1), X2) active(U51(X1, X2, X3)) -> U51(active(X1), X2, X3) active(s(X)) -> s(active(X)) active(plus(X1, X2)) -> plus(active(X1), X2) active(plus(X1, X2)) -> plus(X1, active(X2)) active(U61(X)) -> U61(active(X)) active(U71(X1, X2, X3)) -> U71(active(X1), X2, X3) active(x(X1, X2)) -> x(active(X1), X2) active(x(X1, X2)) -> x(X1, active(X2)) active(and(X1, X2)) -> and(active(X1), X2) U11(mark(X1), X2, X3) -> mark(U11(X1, X2, X3)) U12(mark(X1), X2) -> mark(U12(X1, X2)) U13(mark(X)) -> mark(U13(X)) U21(mark(X1), X2) -> mark(U21(X1, X2)) U22(mark(X)) -> mark(U22(X)) U31(mark(X1), X2, X3) -> mark(U31(X1, X2, X3)) U32(mark(X1), X2) -> mark(U32(X1, X2)) U33(mark(X)) -> mark(U33(X)) U41(mark(X1), X2) -> mark(U41(X1, X2)) U51(mark(X1), X2, X3) -> mark(U51(X1, X2, X3)) s(mark(X)) -> mark(s(X)) plus(mark(X1), X2) -> mark(plus(X1, X2)) plus(X1, mark(X2)) -> mark(plus(X1, X2)) U61(mark(X)) -> mark(U61(X)) U71(mark(X1), X2, X3) -> mark(U71(X1, X2, X3)) x(mark(X1), X2) -> mark(x(X1, X2)) x(X1, mark(X2)) -> mark(x(X1, X2)) and(mark(X1), X2) -> mark(and(X1, X2)) proper(U11(X1, X2, X3)) -> U11(proper(X1), proper(X2), proper(X3)) proper(tt) -> ok(tt) proper(U12(X1, X2)) -> U12(proper(X1), proper(X2)) proper(isNat(X)) -> isNat(proper(X)) proper(U13(X)) -> U13(proper(X)) proper(U21(X1, X2)) -> U21(proper(X1), proper(X2)) proper(U22(X)) -> U22(proper(X)) proper(U31(X1, X2, X3)) -> U31(proper(X1), proper(X2), proper(X3)) proper(U32(X1, X2)) -> U32(proper(X1), proper(X2)) proper(U33(X)) -> U33(proper(X)) proper(U41(X1, X2)) -> U41(proper(X1), proper(X2)) proper(U51(X1, X2, X3)) -> U51(proper(X1), proper(X2), proper(X3)) proper(s(X)) -> s(proper(X)) proper(plus(X1, X2)) -> plus(proper(X1), proper(X2)) proper(U61(X)) -> U61(proper(X)) proper(0) -> ok(0) proper(U71(X1, X2, X3)) -> U71(proper(X1), proper(X2), proper(X3)) proper(x(X1, X2)) -> x(proper(X1), proper(X2)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(isNatKind(X)) -> isNatKind(proper(X)) U11(ok(X1), ok(X2), ok(X3)) -> ok(U11(X1, X2, X3)) U12(ok(X1), ok(X2)) -> ok(U12(X1, X2)) isNat(ok(X)) -> ok(isNat(X)) U13(ok(X)) -> ok(U13(X)) U21(ok(X1), ok(X2)) -> ok(U21(X1, X2)) U22(ok(X)) -> ok(U22(X)) U31(ok(X1), ok(X2), ok(X3)) -> ok(U31(X1, X2, X3)) U32(ok(X1), ok(X2)) -> ok(U32(X1, X2)) U33(ok(X)) -> ok(U33(X)) U41(ok(X1), ok(X2)) -> ok(U41(X1, X2)) U51(ok(X1), ok(X2), ok(X3)) -> ok(U51(X1, X2, X3)) s(ok(X)) -> ok(s(X)) plus(ok(X1), ok(X2)) -> ok(plus(X1, X2)) U61(ok(X)) -> ok(U61(X)) U71(ok(X1), ok(X2), ok(X3)) -> ok(U71(X1, X2, X3)) x(ok(X1), ok(X2)) -> ok(x(X1, X2)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) isNatKind(ok(X)) -> ok(isNatKind(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) NestedDefinedSymbolProof (UPPER BOUND(ID)) The following defined symbols can occur below the 0th argument of top: proper, active The following defined symbols can occur below the 0th argument of proper: proper, active The following defined symbols can occur below the 0th argument of active: proper, active Hence, the left-hand sides of the following rules are not basic-reachable and can be removed: active(U11(tt, V1, V2)) -> mark(U12(isNat(V1), V2)) active(U12(tt, V2)) -> mark(U13(isNat(V2))) active(U13(tt)) -> mark(tt) active(U21(tt, V1)) -> mark(U22(isNat(V1))) active(U22(tt)) -> mark(tt) active(U31(tt, V1, V2)) -> mark(U32(isNat(V1), V2)) active(U32(tt, V2)) -> mark(U33(isNat(V2))) active(U33(tt)) -> mark(tt) active(U41(tt, N)) -> mark(N) active(U51(tt, M, N)) -> mark(s(plus(N, M))) active(U61(tt)) -> mark(0) active(U71(tt, M, N)) -> mark(plus(x(N, M), N)) active(and(tt, X)) -> mark(X) active(isNat(0)) -> mark(tt) active(isNat(plus(V1, V2))) -> mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)) active(isNat(s(V1))) -> mark(U21(isNatKind(V1), V1)) active(isNat(x(V1, V2))) -> mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2)) active(isNatKind(0)) -> mark(tt) active(isNatKind(plus(V1, V2))) -> mark(and(isNatKind(V1), isNatKind(V2))) active(isNatKind(s(V1))) -> mark(isNatKind(V1)) active(isNatKind(x(V1, V2))) -> mark(and(isNatKind(V1), isNatKind(V2))) active(plus(N, 0)) -> mark(U41(and(isNat(N), isNatKind(N)), N)) active(plus(N, s(M))) -> mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)) active(x(N, 0)) -> mark(U61(and(isNat(N), isNatKind(N)))) active(x(N, s(M))) -> mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)) active(U11(X1, X2, X3)) -> U11(active(X1), X2, X3) active(U12(X1, X2)) -> U12(active(X1), X2) active(U13(X)) -> U13(active(X)) active(U21(X1, X2)) -> U21(active(X1), X2) active(U22(X)) -> U22(active(X)) active(U31(X1, X2, X3)) -> U31(active(X1), X2, X3) active(U32(X1, X2)) -> U32(active(X1), X2) active(U33(X)) -> U33(active(X)) active(U41(X1, X2)) -> U41(active(X1), X2) active(U51(X1, X2, X3)) -> U51(active(X1), X2, X3) active(s(X)) -> s(active(X)) active(plus(X1, X2)) -> plus(active(X1), X2) active(plus(X1, X2)) -> plus(X1, active(X2)) active(U61(X)) -> U61(active(X)) active(U71(X1, X2, X3)) -> U71(active(X1), X2, X3) active(x(X1, X2)) -> x(active(X1), X2) active(x(X1, X2)) -> x(X1, active(X2)) active(and(X1, X2)) -> and(active(X1), X2) proper(U11(X1, X2, X3)) -> U11(proper(X1), proper(X2), proper(X3)) proper(U12(X1, X2)) -> U12(proper(X1), proper(X2)) proper(isNat(X)) -> isNat(proper(X)) proper(U13(X)) -> U13(proper(X)) proper(U21(X1, X2)) -> U21(proper(X1), proper(X2)) proper(U22(X)) -> U22(proper(X)) proper(U31(X1, X2, X3)) -> U31(proper(X1), proper(X2), proper(X3)) proper(U32(X1, X2)) -> U32(proper(X1), proper(X2)) proper(U33(X)) -> U33(proper(X)) proper(U41(X1, X2)) -> U41(proper(X1), proper(X2)) proper(U51(X1, X2, X3)) -> U51(proper(X1), proper(X2), proper(X3)) proper(s(X)) -> s(proper(X)) proper(plus(X1, X2)) -> plus(proper(X1), proper(X2)) proper(U61(X)) -> U61(proper(X)) proper(U71(X1, X2, X3)) -> U71(proper(X1), proper(X2), proper(X3)) proper(x(X1, X2)) -> x(proper(X1), proper(X2)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(isNatKind(X)) -> isNatKind(proper(X)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: U11(mark(X1), X2, X3) -> mark(U11(X1, X2, X3)) U12(mark(X1), X2) -> mark(U12(X1, X2)) U13(mark(X)) -> mark(U13(X)) U21(mark(X1), X2) -> mark(U21(X1, X2)) U22(mark(X)) -> mark(U22(X)) U31(mark(X1), X2, X3) -> mark(U31(X1, X2, X3)) U32(mark(X1), X2) -> mark(U32(X1, X2)) U33(mark(X)) -> mark(U33(X)) U41(mark(X1), X2) -> mark(U41(X1, X2)) U51(mark(X1), X2, X3) -> mark(U51(X1, X2, X3)) s(mark(X)) -> mark(s(X)) plus(mark(X1), X2) -> mark(plus(X1, X2)) plus(X1, mark(X2)) -> mark(plus(X1, X2)) U61(mark(X)) -> mark(U61(X)) U71(mark(X1), X2, X3) -> mark(U71(X1, X2, X3)) x(mark(X1), X2) -> mark(x(X1, X2)) x(X1, mark(X2)) -> mark(x(X1, X2)) and(mark(X1), X2) -> mark(and(X1, X2)) proper(tt) -> ok(tt) proper(0) -> ok(0) U11(ok(X1), ok(X2), ok(X3)) -> ok(U11(X1, X2, X3)) U12(ok(X1), ok(X2)) -> ok(U12(X1, X2)) isNat(ok(X)) -> ok(isNat(X)) U13(ok(X)) -> ok(U13(X)) U21(ok(X1), ok(X2)) -> ok(U21(X1, X2)) U22(ok(X)) -> ok(U22(X)) U31(ok(X1), ok(X2), ok(X3)) -> ok(U31(X1, X2, X3)) U32(ok(X1), ok(X2)) -> ok(U32(X1, X2)) U33(ok(X)) -> ok(U33(X)) U41(ok(X1), ok(X2)) -> ok(U41(X1, X2)) U51(ok(X1), ok(X2), ok(X3)) -> ok(U51(X1, X2, X3)) s(ok(X)) -> ok(s(X)) plus(ok(X1), ok(X2)) -> ok(plus(X1, X2)) U61(ok(X)) -> ok(U61(X)) U71(ok(X1), ok(X2), ok(X3)) -> ok(U71(X1, X2, X3)) x(ok(X1), ok(X2)) -> ok(x(X1, X2)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) isNatKind(ok(X)) -> ok(isNatKind(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: U11(mark(X1), X2, X3) -> mark(U11(X1, X2, X3)) U12(mark(X1), X2) -> mark(U12(X1, X2)) U13(mark(X)) -> mark(U13(X)) U21(mark(X1), X2) -> mark(U21(X1, X2)) U22(mark(X)) -> mark(U22(X)) U31(mark(X1), X2, X3) -> mark(U31(X1, X2, X3)) U32(mark(X1), X2) -> mark(U32(X1, X2)) U33(mark(X)) -> mark(U33(X)) U41(mark(X1), X2) -> mark(U41(X1, X2)) U51(mark(X1), X2, X3) -> mark(U51(X1, X2, X3)) s(mark(X)) -> mark(s(X)) plus(mark(X1), X2) -> mark(plus(X1, X2)) plus(X1, mark(X2)) -> mark(plus(X1, X2)) U61(mark(X)) -> mark(U61(X)) U71(mark(X1), X2, X3) -> mark(U71(X1, X2, X3)) x(mark(X1), X2) -> mark(x(X1, X2)) x(X1, mark(X2)) -> mark(x(X1, X2)) and(mark(X1), X2) -> mark(and(X1, X2)) proper(tt) -> ok(tt) proper(0) -> ok(0) U11(ok(X1), ok(X2), ok(X3)) -> ok(U11(X1, X2, X3)) U12(ok(X1), ok(X2)) -> ok(U12(X1, X2)) isNat(ok(X)) -> ok(isNat(X)) U13(ok(X)) -> ok(U13(X)) U21(ok(X1), ok(X2)) -> ok(U21(X1, X2)) U22(ok(X)) -> ok(U22(X)) U31(ok(X1), ok(X2), ok(X3)) -> ok(U31(X1, X2, X3)) U32(ok(X1), ok(X2)) -> ok(U32(X1, X2)) U33(ok(X)) -> ok(U33(X)) U41(ok(X1), ok(X2)) -> ok(U41(X1, X2)) U51(ok(X1), ok(X2), ok(X3)) -> ok(U51(X1, X2, X3)) s(ok(X)) -> ok(s(X)) plus(ok(X1), ok(X2)) -> ok(plus(X1, X2)) U61(ok(X)) -> ok(U61(X)) U71(ok(X1), ok(X2), ok(X3)) -> ok(U71(X1, X2, X3)) x(ok(X1), ok(X2)) -> ok(x(X1, X2)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) isNatKind(ok(X)) -> ok(isNatKind(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (5) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20] transitions: mark0(0) -> 0 tt0() -> 0 ok0(0) -> 0 00() -> 0 active0(0) -> 0 U110(0, 0, 0) -> 1 U120(0, 0) -> 2 U130(0) -> 3 U210(0, 0) -> 4 U220(0) -> 5 U310(0, 0, 0) -> 6 U320(0, 0) -> 7 U330(0) -> 8 U410(0, 0) -> 9 U510(0, 0, 0) -> 10 s0(0) -> 11 plus0(0, 0) -> 12 U610(0) -> 13 U710(0, 0, 0) -> 14 x0(0, 0) -> 15 and0(0, 0) -> 16 proper0(0) -> 17 isNat0(0) -> 18 isNatKind0(0) -> 19 top0(0) -> 20 U111(0, 0, 0) -> 21 mark1(21) -> 1 U121(0, 0) -> 22 mark1(22) -> 2 U131(0) -> 23 mark1(23) -> 3 U211(0, 0) -> 24 mark1(24) -> 4 U221(0) -> 25 mark1(25) -> 5 U311(0, 0, 0) -> 26 mark1(26) -> 6 U321(0, 0) -> 27 mark1(27) -> 7 U331(0) -> 28 mark1(28) -> 8 U411(0, 0) -> 29 mark1(29) -> 9 U511(0, 0, 0) -> 30 mark1(30) -> 10 s1(0) -> 31 mark1(31) -> 11 plus1(0, 0) -> 32 mark1(32) -> 12 U611(0) -> 33 mark1(33) -> 13 U711(0, 0, 0) -> 34 mark1(34) -> 14 x1(0, 0) -> 35 mark1(35) -> 15 and1(0, 0) -> 36 mark1(36) -> 16 tt1() -> 37 ok1(37) -> 17 01() -> 38 ok1(38) -> 17 U111(0, 0, 0) -> 39 ok1(39) -> 1 U121(0, 0) -> 40 ok1(40) -> 2 isNat1(0) -> 41 ok1(41) -> 18 U131(0) -> 42 ok1(42) -> 3 U211(0, 0) -> 43 ok1(43) -> 4 U221(0) -> 44 ok1(44) -> 5 U311(0, 0, 0) -> 45 ok1(45) -> 6 U321(0, 0) -> 46 ok1(46) -> 7 U331(0) -> 47 ok1(47) -> 8 U411(0, 0) -> 48 ok1(48) -> 9 U511(0, 0, 0) -> 49 ok1(49) -> 10 s1(0) -> 50 ok1(50) -> 11 plus1(0, 0) -> 51 ok1(51) -> 12 U611(0) -> 52 ok1(52) -> 13 U711(0, 0, 0) -> 53 ok1(53) -> 14 x1(0, 0) -> 54 ok1(54) -> 15 and1(0, 0) -> 55 ok1(55) -> 16 isNatKind1(0) -> 56 ok1(56) -> 19 proper1(0) -> 57 top1(57) -> 20 active1(0) -> 58 top1(58) -> 20 mark1(21) -> 21 mark1(21) -> 39 mark1(22) -> 22 mark1(22) -> 40 mark1(23) -> 23 mark1(23) -> 42 mark1(24) -> 24 mark1(24) -> 43 mark1(25) -> 25 mark1(25) -> 44 mark1(26) -> 26 mark1(26) -> 45 mark1(27) -> 27 mark1(27) -> 46 mark1(28) -> 28 mark1(28) -> 47 mark1(29) -> 29 mark1(29) -> 48 mark1(30) -> 30 mark1(30) -> 49 mark1(31) -> 31 mark1(31) -> 50 mark1(32) -> 32 mark1(32) -> 51 mark1(33) -> 33 mark1(33) -> 52 mark1(34) -> 34 mark1(34) -> 53 mark1(35) -> 35 mark1(35) -> 54 mark1(36) -> 36 mark1(36) -> 55 ok1(37) -> 57 ok1(38) -> 57 ok1(39) -> 21 ok1(39) -> 39 ok1(40) -> 22 ok1(40) -> 40 ok1(41) -> 41 ok1(42) -> 23 ok1(42) -> 42 ok1(43) -> 24 ok1(43) -> 43 ok1(44) -> 25 ok1(44) -> 44 ok1(45) -> 26 ok1(45) -> 45 ok1(46) -> 27 ok1(46) -> 46 ok1(47) -> 28 ok1(47) -> 47 ok1(48) -> 29 ok1(48) -> 48 ok1(49) -> 30 ok1(49) -> 49 ok1(50) -> 31 ok1(50) -> 50 ok1(51) -> 32 ok1(51) -> 51 ok1(52) -> 33 ok1(52) -> 52 ok1(53) -> 34 ok1(53) -> 53 ok1(54) -> 35 ok1(54) -> 54 ok1(55) -> 36 ok1(55) -> 55 ok1(56) -> 56 active2(37) -> 59 top2(59) -> 20 active2(38) -> 59 ---------------------------------------- (6) BOUNDS(1, n^1) ---------------------------------------- (7) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (8) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(U11(tt, V1, V2)) -> mark(U12(isNat(V1), V2)) active(U12(tt, V2)) -> mark(U13(isNat(V2))) active(U13(tt)) -> mark(tt) active(U21(tt, V1)) -> mark(U22(isNat(V1))) active(U22(tt)) -> mark(tt) active(U31(tt, V1, V2)) -> mark(U32(isNat(V1), V2)) active(U32(tt, V2)) -> mark(U33(isNat(V2))) active(U33(tt)) -> mark(tt) active(U41(tt, N)) -> mark(N) active(U51(tt, M, N)) -> mark(s(plus(N, M))) active(U61(tt)) -> mark(0) active(U71(tt, M, N)) -> mark(plus(x(N, M), N)) active(and(tt, X)) -> mark(X) active(isNat(0)) -> mark(tt) active(isNat(plus(V1, V2))) -> mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)) active(isNat(s(V1))) -> mark(U21(isNatKind(V1), V1)) active(isNat(x(V1, V2))) -> mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2)) active(isNatKind(0)) -> mark(tt) active(isNatKind(plus(V1, V2))) -> mark(and(isNatKind(V1), isNatKind(V2))) active(isNatKind(s(V1))) -> mark(isNatKind(V1)) active(isNatKind(x(V1, V2))) -> mark(and(isNatKind(V1), isNatKind(V2))) active(plus(N, 0)) -> mark(U41(and(isNat(N), isNatKind(N)), N)) active(plus(N, s(M))) -> mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)) active(x(N, 0)) -> mark(U61(and(isNat(N), isNatKind(N)))) active(x(N, s(M))) -> mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)) active(U11(X1, X2, X3)) -> U11(active(X1), X2, X3) active(U12(X1, X2)) -> U12(active(X1), X2) active(U13(X)) -> U13(active(X)) active(U21(X1, X2)) -> U21(active(X1), X2) active(U22(X)) -> U22(active(X)) active(U31(X1, X2, X3)) -> U31(active(X1), X2, X3) active(U32(X1, X2)) -> U32(active(X1), X2) active(U33(X)) -> U33(active(X)) active(U41(X1, X2)) -> U41(active(X1), X2) active(U51(X1, X2, X3)) -> U51(active(X1), X2, X3) active(s(X)) -> s(active(X)) active(plus(X1, X2)) -> plus(active(X1), X2) active(plus(X1, X2)) -> plus(X1, active(X2)) active(U61(X)) -> U61(active(X)) active(U71(X1, X2, X3)) -> U71(active(X1), X2, X3) active(x(X1, X2)) -> x(active(X1), X2) active(x(X1, X2)) -> x(X1, active(X2)) active(and(X1, X2)) -> and(active(X1), X2) U11(mark(X1), X2, X3) -> mark(U11(X1, X2, X3)) U12(mark(X1), X2) -> mark(U12(X1, X2)) U13(mark(X)) -> mark(U13(X)) U21(mark(X1), X2) -> mark(U21(X1, X2)) U22(mark(X)) -> mark(U22(X)) U31(mark(X1), X2, X3) -> mark(U31(X1, X2, X3)) U32(mark(X1), X2) -> mark(U32(X1, X2)) U33(mark(X)) -> mark(U33(X)) U41(mark(X1), X2) -> mark(U41(X1, X2)) U51(mark(X1), X2, X3) -> mark(U51(X1, X2, X3)) s(mark(X)) -> mark(s(X)) plus(mark(X1), X2) -> mark(plus(X1, X2)) plus(X1, mark(X2)) -> mark(plus(X1, X2)) U61(mark(X)) -> mark(U61(X)) U71(mark(X1), X2, X3) -> mark(U71(X1, X2, X3)) x(mark(X1), X2) -> mark(x(X1, X2)) x(X1, mark(X2)) -> mark(x(X1, X2)) and(mark(X1), X2) -> mark(and(X1, X2)) proper(U11(X1, X2, X3)) -> U11(proper(X1), proper(X2), proper(X3)) proper(tt) -> ok(tt) proper(U12(X1, X2)) -> U12(proper(X1), proper(X2)) proper(isNat(X)) -> isNat(proper(X)) proper(U13(X)) -> U13(proper(X)) proper(U21(X1, X2)) -> U21(proper(X1), proper(X2)) proper(U22(X)) -> U22(proper(X)) proper(U31(X1, X2, X3)) -> U31(proper(X1), proper(X2), proper(X3)) proper(U32(X1, X2)) -> U32(proper(X1), proper(X2)) proper(U33(X)) -> U33(proper(X)) proper(U41(X1, X2)) -> U41(proper(X1), proper(X2)) proper(U51(X1, X2, X3)) -> U51(proper(X1), proper(X2), proper(X3)) proper(s(X)) -> s(proper(X)) proper(plus(X1, X2)) -> plus(proper(X1), proper(X2)) proper(U61(X)) -> U61(proper(X)) proper(0) -> ok(0) proper(U71(X1, X2, X3)) -> U71(proper(X1), proper(X2), proper(X3)) proper(x(X1, X2)) -> x(proper(X1), proper(X2)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(isNatKind(X)) -> isNatKind(proper(X)) U11(ok(X1), ok(X2), ok(X3)) -> ok(U11(X1, X2, X3)) U12(ok(X1), ok(X2)) -> ok(U12(X1, X2)) isNat(ok(X)) -> ok(isNat(X)) U13(ok(X)) -> ok(U13(X)) U21(ok(X1), ok(X2)) -> ok(U21(X1, X2)) U22(ok(X)) -> ok(U22(X)) U31(ok(X1), ok(X2), ok(X3)) -> ok(U31(X1, X2, X3)) U32(ok(X1), ok(X2)) -> ok(U32(X1, X2)) U33(ok(X)) -> ok(U33(X)) U41(ok(X1), ok(X2)) -> ok(U41(X1, X2)) U51(ok(X1), ok(X2), ok(X3)) -> ok(U51(X1, X2, X3)) s(ok(X)) -> ok(s(X)) plus(ok(X1), ok(X2)) -> ok(plus(X1, X2)) U61(ok(X)) -> ok(U61(X)) U71(ok(X1), ok(X2), ok(X3)) -> ok(U71(X1, X2, X3)) x(ok(X1), ok(X2)) -> ok(x(X1, X2)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) isNatKind(ok(X)) -> ok(isNatKind(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (9) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence U32(mark(X1), X2) ->^+ mark(U32(X1, X2)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [X1 / mark(X1)]. The result substitution is [ ]. ---------------------------------------- (10) Complex Obligation (BEST) ---------------------------------------- (11) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(U11(tt, V1, V2)) -> mark(U12(isNat(V1), V2)) active(U12(tt, V2)) -> mark(U13(isNat(V2))) active(U13(tt)) -> mark(tt) active(U21(tt, V1)) -> mark(U22(isNat(V1))) active(U22(tt)) -> mark(tt) active(U31(tt, V1, V2)) -> mark(U32(isNat(V1), V2)) active(U32(tt, V2)) -> mark(U33(isNat(V2))) active(U33(tt)) -> mark(tt) active(U41(tt, N)) -> mark(N) active(U51(tt, M, N)) -> mark(s(plus(N, M))) active(U61(tt)) -> mark(0) active(U71(tt, M, N)) -> mark(plus(x(N, M), N)) active(and(tt, X)) -> mark(X) active(isNat(0)) -> mark(tt) active(isNat(plus(V1, V2))) -> mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)) active(isNat(s(V1))) -> mark(U21(isNatKind(V1), V1)) active(isNat(x(V1, V2))) -> mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2)) active(isNatKind(0)) -> mark(tt) active(isNatKind(plus(V1, V2))) -> mark(and(isNatKind(V1), isNatKind(V2))) active(isNatKind(s(V1))) -> mark(isNatKind(V1)) active(isNatKind(x(V1, V2))) -> mark(and(isNatKind(V1), isNatKind(V2))) active(plus(N, 0)) -> mark(U41(and(isNat(N), isNatKind(N)), N)) active(plus(N, s(M))) -> mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)) active(x(N, 0)) -> mark(U61(and(isNat(N), isNatKind(N)))) active(x(N, s(M))) -> mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)) active(U11(X1, X2, X3)) -> U11(active(X1), X2, X3) active(U12(X1, X2)) -> U12(active(X1), X2) active(U13(X)) -> U13(active(X)) active(U21(X1, X2)) -> U21(active(X1), X2) active(U22(X)) -> U22(active(X)) active(U31(X1, X2, X3)) -> U31(active(X1), X2, X3) active(U32(X1, X2)) -> U32(active(X1), X2) active(U33(X)) -> U33(active(X)) active(U41(X1, X2)) -> U41(active(X1), X2) active(U51(X1, X2, X3)) -> U51(active(X1), X2, X3) active(s(X)) -> s(active(X)) active(plus(X1, X2)) -> plus(active(X1), X2) active(plus(X1, X2)) -> plus(X1, active(X2)) active(U61(X)) -> U61(active(X)) active(U71(X1, X2, X3)) -> U71(active(X1), X2, X3) active(x(X1, X2)) -> x(active(X1), X2) active(x(X1, X2)) -> x(X1, active(X2)) active(and(X1, X2)) -> and(active(X1), X2) U11(mark(X1), X2, X3) -> mark(U11(X1, X2, X3)) U12(mark(X1), X2) -> mark(U12(X1, X2)) U13(mark(X)) -> mark(U13(X)) U21(mark(X1), X2) -> mark(U21(X1, X2)) U22(mark(X)) -> mark(U22(X)) U31(mark(X1), X2, X3) -> mark(U31(X1, X2, X3)) U32(mark(X1), X2) -> mark(U32(X1, X2)) U33(mark(X)) -> mark(U33(X)) U41(mark(X1), X2) -> mark(U41(X1, X2)) U51(mark(X1), X2, X3) -> mark(U51(X1, X2, X3)) s(mark(X)) -> mark(s(X)) plus(mark(X1), X2) -> mark(plus(X1, X2)) plus(X1, mark(X2)) -> mark(plus(X1, X2)) U61(mark(X)) -> mark(U61(X)) U71(mark(X1), X2, X3) -> mark(U71(X1, X2, X3)) x(mark(X1), X2) -> mark(x(X1, X2)) x(X1, mark(X2)) -> mark(x(X1, X2)) and(mark(X1), X2) -> mark(and(X1, X2)) proper(U11(X1, X2, X3)) -> U11(proper(X1), proper(X2), proper(X3)) proper(tt) -> ok(tt) proper(U12(X1, X2)) -> U12(proper(X1), proper(X2)) proper(isNat(X)) -> isNat(proper(X)) proper(U13(X)) -> U13(proper(X)) proper(U21(X1, X2)) -> U21(proper(X1), proper(X2)) proper(U22(X)) -> U22(proper(X)) proper(U31(X1, X2, X3)) -> U31(proper(X1), proper(X2), proper(X3)) proper(U32(X1, X2)) -> U32(proper(X1), proper(X2)) proper(U33(X)) -> U33(proper(X)) proper(U41(X1, X2)) -> U41(proper(X1), proper(X2)) proper(U51(X1, X2, X3)) -> U51(proper(X1), proper(X2), proper(X3)) proper(s(X)) -> s(proper(X)) proper(plus(X1, X2)) -> plus(proper(X1), proper(X2)) proper(U61(X)) -> U61(proper(X)) proper(0) -> ok(0) proper(U71(X1, X2, X3)) -> U71(proper(X1), proper(X2), proper(X3)) proper(x(X1, X2)) -> x(proper(X1), proper(X2)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(isNatKind(X)) -> isNatKind(proper(X)) U11(ok(X1), ok(X2), ok(X3)) -> ok(U11(X1, X2, X3)) U12(ok(X1), ok(X2)) -> ok(U12(X1, X2)) isNat(ok(X)) -> ok(isNat(X)) U13(ok(X)) -> ok(U13(X)) U21(ok(X1), ok(X2)) -> ok(U21(X1, X2)) U22(ok(X)) -> ok(U22(X)) U31(ok(X1), ok(X2), ok(X3)) -> ok(U31(X1, X2, X3)) U32(ok(X1), ok(X2)) -> ok(U32(X1, X2)) U33(ok(X)) -> ok(U33(X)) U41(ok(X1), ok(X2)) -> ok(U41(X1, X2)) U51(ok(X1), ok(X2), ok(X3)) -> ok(U51(X1, X2, X3)) s(ok(X)) -> ok(s(X)) plus(ok(X1), ok(X2)) -> ok(plus(X1, X2)) U61(ok(X)) -> ok(U61(X)) U71(ok(X1), ok(X2), ok(X3)) -> ok(U71(X1, X2, X3)) x(ok(X1), ok(X2)) -> ok(x(X1, X2)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) isNatKind(ok(X)) -> ok(isNatKind(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (12) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (13) BOUNDS(n^1, INF) ---------------------------------------- (14) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(U11(tt, V1, V2)) -> mark(U12(isNat(V1), V2)) active(U12(tt, V2)) -> mark(U13(isNat(V2))) active(U13(tt)) -> mark(tt) active(U21(tt, V1)) -> mark(U22(isNat(V1))) active(U22(tt)) -> mark(tt) active(U31(tt, V1, V2)) -> mark(U32(isNat(V1), V2)) active(U32(tt, V2)) -> mark(U33(isNat(V2))) active(U33(tt)) -> mark(tt) active(U41(tt, N)) -> mark(N) active(U51(tt, M, N)) -> mark(s(plus(N, M))) active(U61(tt)) -> mark(0) active(U71(tt, M, N)) -> mark(plus(x(N, M), N)) active(and(tt, X)) -> mark(X) active(isNat(0)) -> mark(tt) active(isNat(plus(V1, V2))) -> mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)) active(isNat(s(V1))) -> mark(U21(isNatKind(V1), V1)) active(isNat(x(V1, V2))) -> mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2)) active(isNatKind(0)) -> mark(tt) active(isNatKind(plus(V1, V2))) -> mark(and(isNatKind(V1), isNatKind(V2))) active(isNatKind(s(V1))) -> mark(isNatKind(V1)) active(isNatKind(x(V1, V2))) -> mark(and(isNatKind(V1), isNatKind(V2))) active(plus(N, 0)) -> mark(U41(and(isNat(N), isNatKind(N)), N)) active(plus(N, s(M))) -> mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)) active(x(N, 0)) -> mark(U61(and(isNat(N), isNatKind(N)))) active(x(N, s(M))) -> mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)) active(U11(X1, X2, X3)) -> U11(active(X1), X2, X3) active(U12(X1, X2)) -> U12(active(X1), X2) active(U13(X)) -> U13(active(X)) active(U21(X1, X2)) -> U21(active(X1), X2) active(U22(X)) -> U22(active(X)) active(U31(X1, X2, X3)) -> U31(active(X1), X2, X3) active(U32(X1, X2)) -> U32(active(X1), X2) active(U33(X)) -> U33(active(X)) active(U41(X1, X2)) -> U41(active(X1), X2) active(U51(X1, X2, X3)) -> U51(active(X1), X2, X3) active(s(X)) -> s(active(X)) active(plus(X1, X2)) -> plus(active(X1), X2) active(plus(X1, X2)) -> plus(X1, active(X2)) active(U61(X)) -> U61(active(X)) active(U71(X1, X2, X3)) -> U71(active(X1), X2, X3) active(x(X1, X2)) -> x(active(X1), X2) active(x(X1, X2)) -> x(X1, active(X2)) active(and(X1, X2)) -> and(active(X1), X2) U11(mark(X1), X2, X3) -> mark(U11(X1, X2, X3)) U12(mark(X1), X2) -> mark(U12(X1, X2)) U13(mark(X)) -> mark(U13(X)) U21(mark(X1), X2) -> mark(U21(X1, X2)) U22(mark(X)) -> mark(U22(X)) U31(mark(X1), X2, X3) -> mark(U31(X1, X2, X3)) U32(mark(X1), X2) -> mark(U32(X1, X2)) U33(mark(X)) -> mark(U33(X)) U41(mark(X1), X2) -> mark(U41(X1, X2)) U51(mark(X1), X2, X3) -> mark(U51(X1, X2, X3)) s(mark(X)) -> mark(s(X)) plus(mark(X1), X2) -> mark(plus(X1, X2)) plus(X1, mark(X2)) -> mark(plus(X1, X2)) U61(mark(X)) -> mark(U61(X)) U71(mark(X1), X2, X3) -> mark(U71(X1, X2, X3)) x(mark(X1), X2) -> mark(x(X1, X2)) x(X1, mark(X2)) -> mark(x(X1, X2)) and(mark(X1), X2) -> mark(and(X1, X2)) proper(U11(X1, X2, X3)) -> U11(proper(X1), proper(X2), proper(X3)) proper(tt) -> ok(tt) proper(U12(X1, X2)) -> U12(proper(X1), proper(X2)) proper(isNat(X)) -> isNat(proper(X)) proper(U13(X)) -> U13(proper(X)) proper(U21(X1, X2)) -> U21(proper(X1), proper(X2)) proper(U22(X)) -> U22(proper(X)) proper(U31(X1, X2, X3)) -> U31(proper(X1), proper(X2), proper(X3)) proper(U32(X1, X2)) -> U32(proper(X1), proper(X2)) proper(U33(X)) -> U33(proper(X)) proper(U41(X1, X2)) -> U41(proper(X1), proper(X2)) proper(U51(X1, X2, X3)) -> U51(proper(X1), proper(X2), proper(X3)) proper(s(X)) -> s(proper(X)) proper(plus(X1, X2)) -> plus(proper(X1), proper(X2)) proper(U61(X)) -> U61(proper(X)) proper(0) -> ok(0) proper(U71(X1, X2, X3)) -> U71(proper(X1), proper(X2), proper(X3)) proper(x(X1, X2)) -> x(proper(X1), proper(X2)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(isNatKind(X)) -> isNatKind(proper(X)) U11(ok(X1), ok(X2), ok(X3)) -> ok(U11(X1, X2, X3)) U12(ok(X1), ok(X2)) -> ok(U12(X1, X2)) isNat(ok(X)) -> ok(isNat(X)) U13(ok(X)) -> ok(U13(X)) U21(ok(X1), ok(X2)) -> ok(U21(X1, X2)) U22(ok(X)) -> ok(U22(X)) U31(ok(X1), ok(X2), ok(X3)) -> ok(U31(X1, X2, X3)) U32(ok(X1), ok(X2)) -> ok(U32(X1, X2)) U33(ok(X)) -> ok(U33(X)) U41(ok(X1), ok(X2)) -> ok(U41(X1, X2)) U51(ok(X1), ok(X2), ok(X3)) -> ok(U51(X1, X2, X3)) s(ok(X)) -> ok(s(X)) plus(ok(X1), ok(X2)) -> ok(plus(X1, X2)) U61(ok(X)) -> ok(U61(X)) U71(ok(X1), ok(X2), ok(X3)) -> ok(U71(X1, X2, X3)) x(ok(X1), ok(X2)) -> ok(x(X1, X2)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) isNatKind(ok(X)) -> ok(isNatKind(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL