/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^3)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^3). (0) CpxTRS (1) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (2) CdtProblem (3) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CdtProblem (5) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 99 ms] (8) CdtProblem (9) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 184 ms] (10) CdtProblem (11) CdtKnowledgeProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CdtProblem (13) CdtRuleRemovalProof [UPPER BOUND(ADD(n^3)), 1237 ms] (14) CdtProblem (15) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (16) BOUNDS(1, 1) (17) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (18) TRS for Loop Detection (19) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (20) BEST (21) proven lower bound (22) LowerBoundPropagationProof [FINISHED, 0 ms] (23) BOUNDS(n^1, INF) (24) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^3). The TRS R consists of the following rules: le(0, Y) -> true le(s(X), 0) -> false le(s(X), s(Y)) -> le(X, Y) minus(0, Y) -> 0 minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y) ifMinus(true, s(X), Y) -> 0 ifMinus(false, s(X), Y) -> s(minus(X, Y)) quot(0, s(Y)) -> 0 quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (2) Obligation: Complexity Dependency Tuples Problem Rules: le(0, z0) -> true le(s(z0), 0) -> false le(s(z0), s(z1)) -> le(z0, z1) minus(0, z0) -> 0 minus(s(z0), z1) -> ifMinus(le(s(z0), z1), s(z0), z1) ifMinus(true, s(z0), z1) -> 0 ifMinus(false, s(z0), z1) -> s(minus(z0, z1)) quot(0, s(z0)) -> 0 quot(s(z0), s(z1)) -> s(quot(minus(z0, z1), s(z1))) Tuples: LE(0, z0) -> c LE(s(z0), 0) -> c1 LE(s(z0), s(z1)) -> c2(LE(z0, z1)) MINUS(0, z0) -> c3 MINUS(s(z0), z1) -> c4(IFMINUS(le(s(z0), z1), s(z0), z1), LE(s(z0), z1)) IFMINUS(true, s(z0), z1) -> c5 IFMINUS(false, s(z0), z1) -> c6(MINUS(z0, z1)) QUOT(0, s(z0)) -> c7 QUOT(s(z0), s(z1)) -> c8(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1)) S tuples: LE(0, z0) -> c LE(s(z0), 0) -> c1 LE(s(z0), s(z1)) -> c2(LE(z0, z1)) MINUS(0, z0) -> c3 MINUS(s(z0), z1) -> c4(IFMINUS(le(s(z0), z1), s(z0), z1), LE(s(z0), z1)) IFMINUS(true, s(z0), z1) -> c5 IFMINUS(false, s(z0), z1) -> c6(MINUS(z0, z1)) QUOT(0, s(z0)) -> c7 QUOT(s(z0), s(z1)) -> c8(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1)) K tuples:none Defined Rule Symbols: le_2, minus_2, ifMinus_3, quot_2 Defined Pair Symbols: LE_2, MINUS_2, IFMINUS_3, QUOT_2 Compound Symbols: c, c1, c2_1, c3, c4_2, c5, c6_1, c7, c8_2 ---------------------------------------- (3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 5 trailing nodes: QUOT(0, s(z0)) -> c7 IFMINUS(true, s(z0), z1) -> c5 LE(0, z0) -> c LE(s(z0), 0) -> c1 MINUS(0, z0) -> c3 ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: le(0, z0) -> true le(s(z0), 0) -> false le(s(z0), s(z1)) -> le(z0, z1) minus(0, z0) -> 0 minus(s(z0), z1) -> ifMinus(le(s(z0), z1), s(z0), z1) ifMinus(true, s(z0), z1) -> 0 ifMinus(false, s(z0), z1) -> s(minus(z0, z1)) quot(0, s(z0)) -> 0 quot(s(z0), s(z1)) -> s(quot(minus(z0, z1), s(z1))) Tuples: LE(s(z0), s(z1)) -> c2(LE(z0, z1)) MINUS(s(z0), z1) -> c4(IFMINUS(le(s(z0), z1), s(z0), z1), LE(s(z0), z1)) IFMINUS(false, s(z0), z1) -> c6(MINUS(z0, z1)) QUOT(s(z0), s(z1)) -> c8(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1)) S tuples: LE(s(z0), s(z1)) -> c2(LE(z0, z1)) MINUS(s(z0), z1) -> c4(IFMINUS(le(s(z0), z1), s(z0), z1), LE(s(z0), z1)) IFMINUS(false, s(z0), z1) -> c6(MINUS(z0, z1)) QUOT(s(z0), s(z1)) -> c8(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1)) K tuples:none Defined Rule Symbols: le_2, minus_2, ifMinus_3, quot_2 Defined Pair Symbols: LE_2, MINUS_2, IFMINUS_3, QUOT_2 Compound Symbols: c2_1, c4_2, c6_1, c8_2 ---------------------------------------- (5) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: quot(0, s(z0)) -> 0 quot(s(z0), s(z1)) -> s(quot(minus(z0, z1), s(z1))) ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: le(s(z0), 0) -> false le(s(z0), s(z1)) -> le(z0, z1) le(0, z0) -> true minus(0, z0) -> 0 minus(s(z0), z1) -> ifMinus(le(s(z0), z1), s(z0), z1) ifMinus(true, s(z0), z1) -> 0 ifMinus(false, s(z0), z1) -> s(minus(z0, z1)) Tuples: LE(s(z0), s(z1)) -> c2(LE(z0, z1)) MINUS(s(z0), z1) -> c4(IFMINUS(le(s(z0), z1), s(z0), z1), LE(s(z0), z1)) IFMINUS(false, s(z0), z1) -> c6(MINUS(z0, z1)) QUOT(s(z0), s(z1)) -> c8(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1)) S tuples: LE(s(z0), s(z1)) -> c2(LE(z0, z1)) MINUS(s(z0), z1) -> c4(IFMINUS(le(s(z0), z1), s(z0), z1), LE(s(z0), z1)) IFMINUS(false, s(z0), z1) -> c6(MINUS(z0, z1)) QUOT(s(z0), s(z1)) -> c8(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1)) K tuples:none Defined Rule Symbols: le_2, minus_2, ifMinus_3 Defined Pair Symbols: LE_2, MINUS_2, IFMINUS_3, QUOT_2 Compound Symbols: c2_1, c4_2, c6_1, c8_2 ---------------------------------------- (7) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. QUOT(s(z0), s(z1)) -> c8(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1)) We considered the (Usable) Rules: ifMinus(true, s(z0), z1) -> 0 ifMinus(false, s(z0), z1) -> s(minus(z0, z1)) minus(s(z0), z1) -> ifMinus(le(s(z0), z1), s(z0), z1) minus(0, z0) -> 0 And the Tuples: LE(s(z0), s(z1)) -> c2(LE(z0, z1)) MINUS(s(z0), z1) -> c4(IFMINUS(le(s(z0), z1), s(z0), z1), LE(s(z0), z1)) IFMINUS(false, s(z0), z1) -> c6(MINUS(z0, z1)) QUOT(s(z0), s(z1)) -> c8(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1)) The order we found is given by the following interpretation: Polynomial interpretation : POL(0) = [1] POL(IFMINUS(x_1, x_2, x_3)) = 0 POL(LE(x_1, x_2)) = 0 POL(MINUS(x_1, x_2)) = 0 POL(QUOT(x_1, x_2)) = x_1 POL(c2(x_1)) = x_1 POL(c4(x_1, x_2)) = x_1 + x_2 POL(c6(x_1)) = x_1 POL(c8(x_1, x_2)) = x_1 + x_2 POL(false) = [1] POL(ifMinus(x_1, x_2, x_3)) = x_2 POL(le(x_1, x_2)) = [1] + x_2 POL(minus(x_1, x_2)) = x_1 POL(s(x_1)) = [1] + x_1 POL(true) = [1] ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: le(s(z0), 0) -> false le(s(z0), s(z1)) -> le(z0, z1) le(0, z0) -> true minus(0, z0) -> 0 minus(s(z0), z1) -> ifMinus(le(s(z0), z1), s(z0), z1) ifMinus(true, s(z0), z1) -> 0 ifMinus(false, s(z0), z1) -> s(minus(z0, z1)) Tuples: LE(s(z0), s(z1)) -> c2(LE(z0, z1)) MINUS(s(z0), z1) -> c4(IFMINUS(le(s(z0), z1), s(z0), z1), LE(s(z0), z1)) IFMINUS(false, s(z0), z1) -> c6(MINUS(z0, z1)) QUOT(s(z0), s(z1)) -> c8(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1)) S tuples: LE(s(z0), s(z1)) -> c2(LE(z0, z1)) MINUS(s(z0), z1) -> c4(IFMINUS(le(s(z0), z1), s(z0), z1), LE(s(z0), z1)) IFMINUS(false, s(z0), z1) -> c6(MINUS(z0, z1)) K tuples: QUOT(s(z0), s(z1)) -> c8(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1)) Defined Rule Symbols: le_2, minus_2, ifMinus_3 Defined Pair Symbols: LE_2, MINUS_2, IFMINUS_3, QUOT_2 Compound Symbols: c2_1, c4_2, c6_1, c8_2 ---------------------------------------- (9) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. IFMINUS(false, s(z0), z1) -> c6(MINUS(z0, z1)) We considered the (Usable) Rules: ifMinus(true, s(z0), z1) -> 0 ifMinus(false, s(z0), z1) -> s(minus(z0, z1)) minus(s(z0), z1) -> ifMinus(le(s(z0), z1), s(z0), z1) minus(0, z0) -> 0 And the Tuples: LE(s(z0), s(z1)) -> c2(LE(z0, z1)) MINUS(s(z0), z1) -> c4(IFMINUS(le(s(z0), z1), s(z0), z1), LE(s(z0), z1)) IFMINUS(false, s(z0), z1) -> c6(MINUS(z0, z1)) QUOT(s(z0), s(z1)) -> c8(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1)) The order we found is given by the following interpretation: Polynomial interpretation : POL(0) = 0 POL(IFMINUS(x_1, x_2, x_3)) = [2]x_2 POL(LE(x_1, x_2)) = 0 POL(MINUS(x_1, x_2)) = [2]x_1 POL(QUOT(x_1, x_2)) = x_1^2 POL(c2(x_1)) = x_1 POL(c4(x_1, x_2)) = x_1 + x_2 POL(c6(x_1)) = x_1 POL(c8(x_1, x_2)) = x_1 + x_2 POL(false) = 0 POL(ifMinus(x_1, x_2, x_3)) = [1] + x_2 POL(le(x_1, x_2)) = 0 POL(minus(x_1, x_2)) = [1] + x_1 POL(s(x_1)) = [2] + x_1 POL(true) = 0 ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules: le(s(z0), 0) -> false le(s(z0), s(z1)) -> le(z0, z1) le(0, z0) -> true minus(0, z0) -> 0 minus(s(z0), z1) -> ifMinus(le(s(z0), z1), s(z0), z1) ifMinus(true, s(z0), z1) -> 0 ifMinus(false, s(z0), z1) -> s(minus(z0, z1)) Tuples: LE(s(z0), s(z1)) -> c2(LE(z0, z1)) MINUS(s(z0), z1) -> c4(IFMINUS(le(s(z0), z1), s(z0), z1), LE(s(z0), z1)) IFMINUS(false, s(z0), z1) -> c6(MINUS(z0, z1)) QUOT(s(z0), s(z1)) -> c8(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1)) S tuples: LE(s(z0), s(z1)) -> c2(LE(z0, z1)) MINUS(s(z0), z1) -> c4(IFMINUS(le(s(z0), z1), s(z0), z1), LE(s(z0), z1)) K tuples: QUOT(s(z0), s(z1)) -> c8(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1)) IFMINUS(false, s(z0), z1) -> c6(MINUS(z0, z1)) Defined Rule Symbols: le_2, minus_2, ifMinus_3 Defined Pair Symbols: LE_2, MINUS_2, IFMINUS_3, QUOT_2 Compound Symbols: c2_1, c4_2, c6_1, c8_2 ---------------------------------------- (11) CdtKnowledgeProof (BOTH BOUNDS(ID, ID)) The following tuples could be moved from S to K by knowledge propagation: MINUS(s(z0), z1) -> c4(IFMINUS(le(s(z0), z1), s(z0), z1), LE(s(z0), z1)) IFMINUS(false, s(z0), z1) -> c6(MINUS(z0, z1)) ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules: le(s(z0), 0) -> false le(s(z0), s(z1)) -> le(z0, z1) le(0, z0) -> true minus(0, z0) -> 0 minus(s(z0), z1) -> ifMinus(le(s(z0), z1), s(z0), z1) ifMinus(true, s(z0), z1) -> 0 ifMinus(false, s(z0), z1) -> s(minus(z0, z1)) Tuples: LE(s(z0), s(z1)) -> c2(LE(z0, z1)) MINUS(s(z0), z1) -> c4(IFMINUS(le(s(z0), z1), s(z0), z1), LE(s(z0), z1)) IFMINUS(false, s(z0), z1) -> c6(MINUS(z0, z1)) QUOT(s(z0), s(z1)) -> c8(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1)) S tuples: LE(s(z0), s(z1)) -> c2(LE(z0, z1)) K tuples: QUOT(s(z0), s(z1)) -> c8(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1)) IFMINUS(false, s(z0), z1) -> c6(MINUS(z0, z1)) MINUS(s(z0), z1) -> c4(IFMINUS(le(s(z0), z1), s(z0), z1), LE(s(z0), z1)) Defined Rule Symbols: le_2, minus_2, ifMinus_3 Defined Pair Symbols: LE_2, MINUS_2, IFMINUS_3, QUOT_2 Compound Symbols: c2_1, c4_2, c6_1, c8_2 ---------------------------------------- (13) CdtRuleRemovalProof (UPPER BOUND(ADD(n^3))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. LE(s(z0), s(z1)) -> c2(LE(z0, z1)) We considered the (Usable) Rules: ifMinus(true, s(z0), z1) -> 0 ifMinus(false, s(z0), z1) -> s(minus(z0, z1)) minus(s(z0), z1) -> ifMinus(le(s(z0), z1), s(z0), z1) minus(0, z0) -> 0 And the Tuples: LE(s(z0), s(z1)) -> c2(LE(z0, z1)) MINUS(s(z0), z1) -> c4(IFMINUS(le(s(z0), z1), s(z0), z1), LE(s(z0), z1)) IFMINUS(false, s(z0), z1) -> c6(MINUS(z0, z1)) QUOT(s(z0), s(z1)) -> c8(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1)) The order we found is given by the following interpretation: Polynomial interpretation : POL(0) = 0 POL(IFMINUS(x_1, x_2, x_3)) = x_2^2 POL(LE(x_1, x_2)) = [1] + x_1 POL(MINUS(x_1, x_2)) = [1] + x_1 + x_1^2 POL(QUOT(x_1, x_2)) = x_1^3 POL(c2(x_1)) = x_1 POL(c4(x_1, x_2)) = x_1 + x_2 POL(c6(x_1)) = x_1 POL(c8(x_1, x_2)) = x_1 + x_2 POL(false) = 0 POL(ifMinus(x_1, x_2, x_3)) = x_2 POL(le(x_1, x_2)) = 0 POL(minus(x_1, x_2)) = x_1 POL(s(x_1)) = [1] + x_1 POL(true) = 0 ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules: le(s(z0), 0) -> false le(s(z0), s(z1)) -> le(z0, z1) le(0, z0) -> true minus(0, z0) -> 0 minus(s(z0), z1) -> ifMinus(le(s(z0), z1), s(z0), z1) ifMinus(true, s(z0), z1) -> 0 ifMinus(false, s(z0), z1) -> s(minus(z0, z1)) Tuples: LE(s(z0), s(z1)) -> c2(LE(z0, z1)) MINUS(s(z0), z1) -> c4(IFMINUS(le(s(z0), z1), s(z0), z1), LE(s(z0), z1)) IFMINUS(false, s(z0), z1) -> c6(MINUS(z0, z1)) QUOT(s(z0), s(z1)) -> c8(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1)) S tuples:none K tuples: QUOT(s(z0), s(z1)) -> c8(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1)) IFMINUS(false, s(z0), z1) -> c6(MINUS(z0, z1)) MINUS(s(z0), z1) -> c4(IFMINUS(le(s(z0), z1), s(z0), z1), LE(s(z0), z1)) LE(s(z0), s(z1)) -> c2(LE(z0, z1)) Defined Rule Symbols: le_2, minus_2, ifMinus_3 Defined Pair Symbols: LE_2, MINUS_2, IFMINUS_3, QUOT_2 Compound Symbols: c2_1, c4_2, c6_1, c8_2 ---------------------------------------- (15) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (16) BOUNDS(1, 1) ---------------------------------------- (17) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (18) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^3). The TRS R consists of the following rules: le(0, Y) -> true le(s(X), 0) -> false le(s(X), s(Y)) -> le(X, Y) minus(0, Y) -> 0 minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y) ifMinus(true, s(X), Y) -> 0 ifMinus(false, s(X), Y) -> s(minus(X, Y)) quot(0, s(Y)) -> 0 quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (19) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence le(s(X), s(Y)) ->^+ le(X, Y) gives rise to a decreasing loop by considering the right hand sides subterm at position []. The pumping substitution is [X / s(X), Y / s(Y)]. The result substitution is [ ]. ---------------------------------------- (20) Complex Obligation (BEST) ---------------------------------------- (21) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^3). The TRS R consists of the following rules: le(0, Y) -> true le(s(X), 0) -> false le(s(X), s(Y)) -> le(X, Y) minus(0, Y) -> 0 minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y) ifMinus(true, s(X), Y) -> 0 ifMinus(false, s(X), Y) -> s(minus(X, Y)) quot(0, s(Y)) -> 0 quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (22) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (23) BOUNDS(n^1, INF) ---------------------------------------- (24) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^3). The TRS R consists of the following rules: le(0, Y) -> true le(s(X), 0) -> false le(s(X), s(Y)) -> le(X, Y) minus(0, Y) -> 0 minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y) ifMinus(true, s(X), Y) -> 0 ifMinus(false, s(X), Y) -> s(minus(X, Y)) quot(0, s(Y)) -> 0 quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) S is empty. Rewrite Strategy: INNERMOST