/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^2)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). (0) CpxRelTRS (1) STerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 260 ms] (2) CpxRelTRS (3) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxWeightedTrs (5) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxTypedWeightedTrs (7) CompletionProof [UPPER BOUND(ID), 0 ms] (8) CpxTypedWeightedCompleteTrs (9) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxTypedWeightedCompleteTrs (11) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (12) CpxRNTS (13) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxRNTS (15) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxRNTS (17) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (18) CpxRNTS (19) IntTrsBoundProof [UPPER BOUND(ID), 563 ms] (20) CpxRNTS (21) IntTrsBoundProof [UPPER BOUND(ID), 68 ms] (22) CpxRNTS (23) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 9481 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 4625 ms] (28) CpxRNTS (29) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (30) CpxRNTS (31) IntTrsBoundProof [UPPER BOUND(ID), 177 ms] (32) CpxRNTS (33) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (34) CpxRNTS (35) FinalProof [FINISHED, 0 ms] (36) BOUNDS(1, n^2) (37) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (38) CpxRelTRS (39) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (40) typed CpxTrs (41) OrderProof [LOWER BOUND(ID), 0 ms] (42) typed CpxTrs (43) RewriteLemmaProof [LOWER BOUND(ID), 307 ms] (44) typed CpxTrs (45) RewriteLemmaProof [LOWER BOUND(ID), 31 ms] (46) proven lower bound (47) LowerBoundPropagationProof [FINISHED, 0 ms] (48) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: loop(Cons(x, xs), Nil, pp, ss) -> False loop(Cons(x', xs'), Cons(x, xs), pp, ss) -> loop[Ite](!EQ(x', x), Cons(x', xs'), Cons(x, xs), pp, ss) loop(Nil, s, pp, ss) -> True match1(p, s) -> loop(p, s, p, s) The (relative) TRS S consists of the following rules: !EQ(S(x), S(y)) -> !EQ(x, y) !EQ(0, S(y)) -> False !EQ(S(x), 0) -> False !EQ(0, 0) -> True loop[Ite](False, p, s, pp, Cons(x, xs)) -> loop(pp, xs, pp, xs) loop[Ite](True, Cons(x', xs'), Cons(x, xs), pp, ss) -> loop(xs', xs, pp, ss) Rewrite Strategy: INNERMOST ---------------------------------------- (1) STerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved termination of relative rules ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: loop(Cons(x, xs), Nil, pp, ss) -> False loop(Cons(x', xs'), Cons(x, xs), pp, ss) -> loop[Ite](!EQ(x', x), Cons(x', xs'), Cons(x, xs), pp, ss) loop(Nil, s, pp, ss) -> True match1(p, s) -> loop(p, s, p, s) The (relative) TRS S consists of the following rules: !EQ(S(x), S(y)) -> !EQ(x, y) !EQ(0, S(y)) -> False !EQ(S(x), 0) -> False !EQ(0, 0) -> True loop[Ite](False, p, s, pp, Cons(x, xs)) -> loop(pp, xs, pp, xs) loop[Ite](True, Cons(x', xs'), Cons(x, xs), pp, ss) -> loop(xs', xs, pp, ss) Rewrite Strategy: INNERMOST ---------------------------------------- (3) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: loop(Cons(x, xs), Nil, pp, ss) -> False [1] loop(Cons(x', xs'), Cons(x, xs), pp, ss) -> loop[Ite](!EQ(x', x), Cons(x', xs'), Cons(x, xs), pp, ss) [1] loop(Nil, s, pp, ss) -> True [1] match1(p, s) -> loop(p, s, p, s) [1] !EQ(S(x), S(y)) -> !EQ(x, y) [0] !EQ(0, S(y)) -> False [0] !EQ(S(x), 0) -> False [0] !EQ(0, 0) -> True [0] loop[Ite](False, p, s, pp, Cons(x, xs)) -> loop(pp, xs, pp, xs) [0] loop[Ite](True, Cons(x', xs'), Cons(x, xs), pp, ss) -> loop(xs', xs, pp, ss) [0] Rewrite Strategy: INNERMOST ---------------------------------------- (5) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: loop(Cons(x, xs), Nil, pp, ss) -> False [1] loop(Cons(x', xs'), Cons(x, xs), pp, ss) -> loop[Ite](!EQ(x', x), Cons(x', xs'), Cons(x, xs), pp, ss) [1] loop(Nil, s, pp, ss) -> True [1] match1(p, s) -> loop(p, s, p, s) [1] !EQ(S(x), S(y)) -> !EQ(x, y) [0] !EQ(0, S(y)) -> False [0] !EQ(S(x), 0) -> False [0] !EQ(0, 0) -> True [0] loop[Ite](False, p, s, pp, Cons(x, xs)) -> loop(pp, xs, pp, xs) [0] loop[Ite](True, Cons(x', xs'), Cons(x, xs), pp, ss) -> loop(xs', xs, pp, ss) [0] The TRS has the following type information: loop :: Cons:Nil -> Cons:Nil -> Cons:Nil -> Cons:Nil -> False:True Cons :: S:0 -> Cons:Nil -> Cons:Nil Nil :: Cons:Nil False :: False:True loop[Ite] :: False:True -> Cons:Nil -> Cons:Nil -> Cons:Nil -> Cons:Nil -> False:True !EQ :: S:0 -> S:0 -> False:True True :: False:True match1 :: Cons:Nil -> Cons:Nil -> False:True S :: S:0 -> S:0 0 :: S:0 Rewrite Strategy: INNERMOST ---------------------------------------- (7) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: loop_4 match1_2 (c) The following functions are completely defined: !EQ_2 loop[Ite]_5 Due to the following rules being added: !EQ(v0, v1) -> null_!EQ [0] loop[Ite](v0, v1, v2, v3, v4) -> null_loop[Ite] [0] And the following fresh constants: null_!EQ, null_loop[Ite] ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: loop(Cons(x, xs), Nil, pp, ss) -> False [1] loop(Cons(x', xs'), Cons(x, xs), pp, ss) -> loop[Ite](!EQ(x', x), Cons(x', xs'), Cons(x, xs), pp, ss) [1] loop(Nil, s, pp, ss) -> True [1] match1(p, s) -> loop(p, s, p, s) [1] !EQ(S(x), S(y)) -> !EQ(x, y) [0] !EQ(0, S(y)) -> False [0] !EQ(S(x), 0) -> False [0] !EQ(0, 0) -> True [0] loop[Ite](False, p, s, pp, Cons(x, xs)) -> loop(pp, xs, pp, xs) [0] loop[Ite](True, Cons(x', xs'), Cons(x, xs), pp, ss) -> loop(xs', xs, pp, ss) [0] !EQ(v0, v1) -> null_!EQ [0] loop[Ite](v0, v1, v2, v3, v4) -> null_loop[Ite] [0] The TRS has the following type information: loop :: Cons:Nil -> Cons:Nil -> Cons:Nil -> Cons:Nil -> False:True:null_!EQ:null_loop[Ite] Cons :: S:0 -> Cons:Nil -> Cons:Nil Nil :: Cons:Nil False :: False:True:null_!EQ:null_loop[Ite] loop[Ite] :: False:True:null_!EQ:null_loop[Ite] -> Cons:Nil -> Cons:Nil -> Cons:Nil -> Cons:Nil -> False:True:null_!EQ:null_loop[Ite] !EQ :: S:0 -> S:0 -> False:True:null_!EQ:null_loop[Ite] True :: False:True:null_!EQ:null_loop[Ite] match1 :: Cons:Nil -> Cons:Nil -> False:True:null_!EQ:null_loop[Ite] S :: S:0 -> S:0 0 :: S:0 null_!EQ :: False:True:null_!EQ:null_loop[Ite] null_loop[Ite] :: False:True:null_!EQ:null_loop[Ite] Rewrite Strategy: INNERMOST ---------------------------------------- (9) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: loop(Cons(x, xs), Nil, pp, ss) -> False [1] loop(Cons(S(x''), xs'), Cons(S(y'), xs), pp, ss) -> loop[Ite](!EQ(x'', y'), Cons(S(x''), xs'), Cons(S(y'), xs), pp, ss) [1] loop(Cons(0, xs'), Cons(S(y''), xs), pp, ss) -> loop[Ite](False, Cons(0, xs'), Cons(S(y''), xs), pp, ss) [1] loop(Cons(S(x1), xs'), Cons(0, xs), pp, ss) -> loop[Ite](False, Cons(S(x1), xs'), Cons(0, xs), pp, ss) [1] loop(Cons(0, xs'), Cons(0, xs), pp, ss) -> loop[Ite](True, Cons(0, xs'), Cons(0, xs), pp, ss) [1] loop(Cons(x', xs'), Cons(x, xs), pp, ss) -> loop[Ite](null_!EQ, Cons(x', xs'), Cons(x, xs), pp, ss) [1] loop(Nil, s, pp, ss) -> True [1] match1(p, s) -> loop(p, s, p, s) [1] !EQ(S(x), S(y)) -> !EQ(x, y) [0] !EQ(0, S(y)) -> False [0] !EQ(S(x), 0) -> False [0] !EQ(0, 0) -> True [0] loop[Ite](False, p, s, pp, Cons(x, xs)) -> loop(pp, xs, pp, xs) [0] loop[Ite](True, Cons(x', xs'), Cons(x, xs), pp, ss) -> loop(xs', xs, pp, ss) [0] !EQ(v0, v1) -> null_!EQ [0] loop[Ite](v0, v1, v2, v3, v4) -> null_loop[Ite] [0] The TRS has the following type information: loop :: Cons:Nil -> Cons:Nil -> Cons:Nil -> Cons:Nil -> False:True:null_!EQ:null_loop[Ite] Cons :: S:0 -> Cons:Nil -> Cons:Nil Nil :: Cons:Nil False :: False:True:null_!EQ:null_loop[Ite] loop[Ite] :: False:True:null_!EQ:null_loop[Ite] -> Cons:Nil -> Cons:Nil -> Cons:Nil -> Cons:Nil -> False:True:null_!EQ:null_loop[Ite] !EQ :: S:0 -> S:0 -> False:True:null_!EQ:null_loop[Ite] True :: False:True:null_!EQ:null_loop[Ite] match1 :: Cons:Nil -> Cons:Nil -> False:True:null_!EQ:null_loop[Ite] S :: S:0 -> S:0 0 :: S:0 null_!EQ :: False:True:null_!EQ:null_loop[Ite] null_loop[Ite] :: False:True:null_!EQ:null_loop[Ite] Rewrite Strategy: INNERMOST ---------------------------------------- (11) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: Nil => 0 False => 1 True => 2 0 => 0 null_!EQ => 0 null_loop[Ite] => 0 ---------------------------------------- (12) Obligation: Complexity RNTS consisting of the following rules: !EQ(z, z') -{ 0 }-> 2 :|: z = 0, z' = 0 !EQ(z, z') -{ 0 }-> 1 :|: z' = 1 + y, y >= 0, z = 0 !EQ(z, z') -{ 0 }-> 1 :|: x >= 0, z = 1 + x, z' = 0 !EQ(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 !EQ(z, z') -{ 0 }-> !EQ(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x loop(z, z', z'', z1) -{ 1 }-> loop[Ite](2, 1 + 0 + xs', 1 + 0 + xs, pp, ss) :|: z'' = pp, xs >= 0, z' = 1 + 0 + xs, z = 1 + 0 + xs', xs' >= 0, z1 = ss, ss >= 0, pp >= 0 loop(z, z', z'', z1) -{ 1 }-> loop[Ite](1, 1 + 0 + xs', 1 + (1 + y'') + xs, pp, ss) :|: z'' = pp, xs >= 0, z = 1 + 0 + xs', xs' >= 0, z' = 1 + (1 + y'') + xs, z1 = ss, y'' >= 0, ss >= 0, pp >= 0 loop(z, z', z'', z1) -{ 1 }-> loop[Ite](1, 1 + (1 + x1) + xs', 1 + 0 + xs, pp, ss) :|: z'' = pp, xs >= 0, x1 >= 0, z' = 1 + 0 + xs, z = 1 + (1 + x1) + xs', xs' >= 0, z1 = ss, ss >= 0, pp >= 0 loop(z, z', z'', z1) -{ 1 }-> loop[Ite](0, 1 + x' + xs', 1 + x + xs, pp, ss) :|: z'' = pp, xs >= 0, z' = 1 + x + xs, x' >= 0, xs' >= 0, x >= 0, z1 = ss, ss >= 0, z = 1 + x' + xs', pp >= 0 loop(z, z', z'', z1) -{ 1 }-> loop[Ite](!EQ(x'', y'), 1 + (1 + x'') + xs', 1 + (1 + y') + xs, pp, ss) :|: z = 1 + (1 + x'') + xs', z'' = pp, xs >= 0, z' = 1 + (1 + y') + xs, xs' >= 0, z1 = ss, y' >= 0, ss >= 0, x'' >= 0, pp >= 0 loop(z, z', z'', z1) -{ 1 }-> 2 :|: z'' = pp, z1 = ss, ss >= 0, s >= 0, z = 0, z' = s, pp >= 0 loop(z, z', z'', z1) -{ 1 }-> 1 :|: z = 1 + x + xs, z'' = pp, xs >= 0, x >= 0, z1 = ss, ss >= 0, pp >= 0, z' = 0 loop[Ite](z, z', z'', z1, z2) -{ 0 }-> loop(pp, xs, pp, xs) :|: z' = p, z2 = 1 + x + xs, xs >= 0, z = 1, z1 = pp, x >= 0, p >= 0, s >= 0, z'' = s, pp >= 0 loop[Ite](z, z', z'', z1, z2) -{ 0 }-> loop(xs', xs, pp, ss) :|: z = 2, xs >= 0, z1 = pp, x' >= 0, xs' >= 0, x >= 0, z' = 1 + x' + xs', ss >= 0, z'' = 1 + x + xs, z2 = ss, pp >= 0 loop[Ite](z, z', z'', z1, z2) -{ 0 }-> 0 :|: z1 = v3, v0 >= 0, v4 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, z2 = v4, v2 >= 0, v3 >= 0 match1(z, z') -{ 1 }-> loop(p, s, p, s) :|: p >= 0, s >= 0, z = p, z' = s ---------------------------------------- (13) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: !EQ(z, z') -{ 0 }-> 2 :|: z = 0, z' = 0 !EQ(z, z') -{ 0 }-> 1 :|: z' - 1 >= 0, z = 0 !EQ(z, z') -{ 0 }-> 1 :|: z - 1 >= 0, z' = 0 !EQ(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 !EQ(z, z') -{ 0 }-> !EQ(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 loop(z, z', z'', z1) -{ 1 }-> loop[Ite](2, 1 + 0 + (z - 1), 1 + 0 + (z' - 1), z'', z1) :|: z' - 1 >= 0, z - 1 >= 0, z1 >= 0, z'' >= 0 loop(z, z', z'', z1) -{ 1 }-> loop[Ite](1, 1 + 0 + (z - 1), 1 + (1 + y'') + xs, z'', z1) :|: xs >= 0, z - 1 >= 0, z' = 1 + (1 + y'') + xs, y'' >= 0, z1 >= 0, z'' >= 0 loop(z, z', z'', z1) -{ 1 }-> loop[Ite](1, 1 + (1 + x1) + xs', 1 + 0 + (z' - 1), z'', z1) :|: z' - 1 >= 0, x1 >= 0, z = 1 + (1 + x1) + xs', xs' >= 0, z1 >= 0, z'' >= 0 loop(z, z', z'', z1) -{ 1 }-> loop[Ite](0, 1 + x' + xs', 1 + x + xs, z'', z1) :|: xs >= 0, z' = 1 + x + xs, x' >= 0, xs' >= 0, x >= 0, z1 >= 0, z = 1 + x' + xs', z'' >= 0 loop(z, z', z'', z1) -{ 1 }-> loop[Ite](!EQ(x'', y'), 1 + (1 + x'') + xs', 1 + (1 + y') + xs, z'', z1) :|: z = 1 + (1 + x'') + xs', xs >= 0, z' = 1 + (1 + y') + xs, xs' >= 0, y' >= 0, z1 >= 0, x'' >= 0, z'' >= 0 loop(z, z', z'', z1) -{ 1 }-> 2 :|: z1 >= 0, z' >= 0, z = 0, z'' >= 0 loop(z, z', z'', z1) -{ 1 }-> 1 :|: z = 1 + x + xs, xs >= 0, x >= 0, z1 >= 0, z'' >= 0, z' = 0 loop[Ite](z, z', z'', z1, z2) -{ 0 }-> loop(xs', xs, z1, z2) :|: z = 2, xs >= 0, x' >= 0, xs' >= 0, x >= 0, z' = 1 + x' + xs', z2 >= 0, z'' = 1 + x + xs, z1 >= 0 loop[Ite](z, z', z'', z1, z2) -{ 0 }-> loop(z1, xs, z1, xs) :|: z2 = 1 + x + xs, xs >= 0, z = 1, x >= 0, z' >= 0, z'' >= 0, z1 >= 0 loop[Ite](z, z', z'', z1, z2) -{ 0 }-> 0 :|: z >= 0, z2 >= 0, z' >= 0, z'' >= 0, z1 >= 0 match1(z, z') -{ 1 }-> loop(z, z', z, z') :|: z >= 0, z' >= 0 ---------------------------------------- (15) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { !EQ } { loop[Ite], loop } { match1 } ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: !EQ(z, z') -{ 0 }-> 2 :|: z = 0, z' = 0 !EQ(z, z') -{ 0 }-> 1 :|: z' - 1 >= 0, z = 0 !EQ(z, z') -{ 0 }-> 1 :|: z - 1 >= 0, z' = 0 !EQ(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 !EQ(z, z') -{ 0 }-> !EQ(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 loop(z, z', z'', z1) -{ 1 }-> loop[Ite](2, 1 + 0 + (z - 1), 1 + 0 + (z' - 1), z'', z1) :|: z' - 1 >= 0, z - 1 >= 0, z1 >= 0, z'' >= 0 loop(z, z', z'', z1) -{ 1 }-> loop[Ite](1, 1 + 0 + (z - 1), 1 + (1 + y'') + xs, z'', z1) :|: xs >= 0, z - 1 >= 0, z' = 1 + (1 + y'') + xs, y'' >= 0, z1 >= 0, z'' >= 0 loop(z, z', z'', z1) -{ 1 }-> loop[Ite](1, 1 + (1 + x1) + xs', 1 + 0 + (z' - 1), z'', z1) :|: z' - 1 >= 0, x1 >= 0, z = 1 + (1 + x1) + xs', xs' >= 0, z1 >= 0, z'' >= 0 loop(z, z', z'', z1) -{ 1 }-> loop[Ite](0, 1 + x' + xs', 1 + x + xs, z'', z1) :|: xs >= 0, z' = 1 + x + xs, x' >= 0, xs' >= 0, x >= 0, z1 >= 0, z = 1 + x' + xs', z'' >= 0 loop(z, z', z'', z1) -{ 1 }-> loop[Ite](!EQ(x'', y'), 1 + (1 + x'') + xs', 1 + (1 + y') + xs, z'', z1) :|: z = 1 + (1 + x'') + xs', xs >= 0, z' = 1 + (1 + y') + xs, xs' >= 0, y' >= 0, z1 >= 0, x'' >= 0, z'' >= 0 loop(z, z', z'', z1) -{ 1 }-> 2 :|: z1 >= 0, z' >= 0, z = 0, z'' >= 0 loop(z, z', z'', z1) -{ 1 }-> 1 :|: z = 1 + x + xs, xs >= 0, x >= 0, z1 >= 0, z'' >= 0, z' = 0 loop[Ite](z, z', z'', z1, z2) -{ 0 }-> loop(xs', xs, z1, z2) :|: z = 2, xs >= 0, x' >= 0, xs' >= 0, x >= 0, z' = 1 + x' + xs', z2 >= 0, z'' = 1 + x + xs, z1 >= 0 loop[Ite](z, z', z'', z1, z2) -{ 0 }-> loop(z1, xs, z1, xs) :|: z2 = 1 + x + xs, xs >= 0, z = 1, x >= 0, z' >= 0, z'' >= 0, z1 >= 0 loop[Ite](z, z', z'', z1, z2) -{ 0 }-> 0 :|: z >= 0, z2 >= 0, z' >= 0, z'' >= 0, z1 >= 0 match1(z, z') -{ 1 }-> loop(z, z', z, z') :|: z >= 0, z' >= 0 Function symbols to be analyzed: {!EQ}, {loop[Ite],loop}, {match1} ---------------------------------------- (17) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: !EQ(z, z') -{ 0 }-> 2 :|: z = 0, z' = 0 !EQ(z, z') -{ 0 }-> 1 :|: z' - 1 >= 0, z = 0 !EQ(z, z') -{ 0 }-> 1 :|: z - 1 >= 0, z' = 0 !EQ(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 !EQ(z, z') -{ 0 }-> !EQ(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 loop(z, z', z'', z1) -{ 1 }-> loop[Ite](2, 1 + 0 + (z - 1), 1 + 0 + (z' - 1), z'', z1) :|: z' - 1 >= 0, z - 1 >= 0, z1 >= 0, z'' >= 0 loop(z, z', z'', z1) -{ 1 }-> loop[Ite](1, 1 + 0 + (z - 1), 1 + (1 + y'') + xs, z'', z1) :|: xs >= 0, z - 1 >= 0, z' = 1 + (1 + y'') + xs, y'' >= 0, z1 >= 0, z'' >= 0 loop(z, z', z'', z1) -{ 1 }-> loop[Ite](1, 1 + (1 + x1) + xs', 1 + 0 + (z' - 1), z'', z1) :|: z' - 1 >= 0, x1 >= 0, z = 1 + (1 + x1) + xs', xs' >= 0, z1 >= 0, z'' >= 0 loop(z, z', z'', z1) -{ 1 }-> loop[Ite](0, 1 + x' + xs', 1 + x + xs, z'', z1) :|: xs >= 0, z' = 1 + x + xs, x' >= 0, xs' >= 0, x >= 0, z1 >= 0, z = 1 + x' + xs', z'' >= 0 loop(z, z', z'', z1) -{ 1 }-> loop[Ite](!EQ(x'', y'), 1 + (1 + x'') + xs', 1 + (1 + y') + xs, z'', z1) :|: z = 1 + (1 + x'') + xs', xs >= 0, z' = 1 + (1 + y') + xs, xs' >= 0, y' >= 0, z1 >= 0, x'' >= 0, z'' >= 0 loop(z, z', z'', z1) -{ 1 }-> 2 :|: z1 >= 0, z' >= 0, z = 0, z'' >= 0 loop(z, z', z'', z1) -{ 1 }-> 1 :|: z = 1 + x + xs, xs >= 0, x >= 0, z1 >= 0, z'' >= 0, z' = 0 loop[Ite](z, z', z'', z1, z2) -{ 0 }-> loop(xs', xs, z1, z2) :|: z = 2, xs >= 0, x' >= 0, xs' >= 0, x >= 0, z' = 1 + x' + xs', z2 >= 0, z'' = 1 + x + xs, z1 >= 0 loop[Ite](z, z', z'', z1, z2) -{ 0 }-> loop(z1, xs, z1, xs) :|: z2 = 1 + x + xs, xs >= 0, z = 1, x >= 0, z' >= 0, z'' >= 0, z1 >= 0 loop[Ite](z, z', z'', z1, z2) -{ 0 }-> 0 :|: z >= 0, z2 >= 0, z' >= 0, z'' >= 0, z1 >= 0 match1(z, z') -{ 1 }-> loop(z, z', z, z') :|: z >= 0, z' >= 0 Function symbols to be analyzed: {!EQ}, {loop[Ite],loop}, {match1} ---------------------------------------- (19) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: !EQ after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 2 ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: !EQ(z, z') -{ 0 }-> 2 :|: z = 0, z' = 0 !EQ(z, z') -{ 0 }-> 1 :|: z' - 1 >= 0, z = 0 !EQ(z, z') -{ 0 }-> 1 :|: z - 1 >= 0, z' = 0 !EQ(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 !EQ(z, z') -{ 0 }-> !EQ(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 loop(z, z', z'', z1) -{ 1 }-> loop[Ite](2, 1 + 0 + (z - 1), 1 + 0 + (z' - 1), z'', z1) :|: z' - 1 >= 0, z - 1 >= 0, z1 >= 0, z'' >= 0 loop(z, z', z'', z1) -{ 1 }-> loop[Ite](1, 1 + 0 + (z - 1), 1 + (1 + y'') + xs, z'', z1) :|: xs >= 0, z - 1 >= 0, z' = 1 + (1 + y'') + xs, y'' >= 0, z1 >= 0, z'' >= 0 loop(z, z', z'', z1) -{ 1 }-> loop[Ite](1, 1 + (1 + x1) + xs', 1 + 0 + (z' - 1), z'', z1) :|: z' - 1 >= 0, x1 >= 0, z = 1 + (1 + x1) + xs', xs' >= 0, z1 >= 0, z'' >= 0 loop(z, z', z'', z1) -{ 1 }-> loop[Ite](0, 1 + x' + xs', 1 + x + xs, z'', z1) :|: xs >= 0, z' = 1 + x + xs, x' >= 0, xs' >= 0, x >= 0, z1 >= 0, z = 1 + x' + xs', z'' >= 0 loop(z, z', z'', z1) -{ 1 }-> loop[Ite](!EQ(x'', y'), 1 + (1 + x'') + xs', 1 + (1 + y') + xs, z'', z1) :|: z = 1 + (1 + x'') + xs', xs >= 0, z' = 1 + (1 + y') + xs, xs' >= 0, y' >= 0, z1 >= 0, x'' >= 0, z'' >= 0 loop(z, z', z'', z1) -{ 1 }-> 2 :|: z1 >= 0, z' >= 0, z = 0, z'' >= 0 loop(z, z', z'', z1) -{ 1 }-> 1 :|: z = 1 + x + xs, xs >= 0, x >= 0, z1 >= 0, z'' >= 0, z' = 0 loop[Ite](z, z', z'', z1, z2) -{ 0 }-> loop(xs', xs, z1, z2) :|: z = 2, xs >= 0, x' >= 0, xs' >= 0, x >= 0, z' = 1 + x' + xs', z2 >= 0, z'' = 1 + x + xs, z1 >= 0 loop[Ite](z, z', z'', z1, z2) -{ 0 }-> loop(z1, xs, z1, xs) :|: z2 = 1 + x + xs, xs >= 0, z = 1, x >= 0, z' >= 0, z'' >= 0, z1 >= 0 loop[Ite](z, z', z'', z1, z2) -{ 0 }-> 0 :|: z >= 0, z2 >= 0, z' >= 0, z'' >= 0, z1 >= 0 match1(z, z') -{ 1 }-> loop(z, z', z, z') :|: z >= 0, z' >= 0 Function symbols to be analyzed: {!EQ}, {loop[Ite],loop}, {match1} Previous analysis results are: !EQ: runtime: ?, size: O(1) [2] ---------------------------------------- (21) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: !EQ after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: !EQ(z, z') -{ 0 }-> 2 :|: z = 0, z' = 0 !EQ(z, z') -{ 0 }-> 1 :|: z' - 1 >= 0, z = 0 !EQ(z, z') -{ 0 }-> 1 :|: z - 1 >= 0, z' = 0 !EQ(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 !EQ(z, z') -{ 0 }-> !EQ(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 loop(z, z', z'', z1) -{ 1 }-> loop[Ite](2, 1 + 0 + (z - 1), 1 + 0 + (z' - 1), z'', z1) :|: z' - 1 >= 0, z - 1 >= 0, z1 >= 0, z'' >= 0 loop(z, z', z'', z1) -{ 1 }-> loop[Ite](1, 1 + 0 + (z - 1), 1 + (1 + y'') + xs, z'', z1) :|: xs >= 0, z - 1 >= 0, z' = 1 + (1 + y'') + xs, y'' >= 0, z1 >= 0, z'' >= 0 loop(z, z', z'', z1) -{ 1 }-> loop[Ite](1, 1 + (1 + x1) + xs', 1 + 0 + (z' - 1), z'', z1) :|: z' - 1 >= 0, x1 >= 0, z = 1 + (1 + x1) + xs', xs' >= 0, z1 >= 0, z'' >= 0 loop(z, z', z'', z1) -{ 1 }-> loop[Ite](0, 1 + x' + xs', 1 + x + xs, z'', z1) :|: xs >= 0, z' = 1 + x + xs, x' >= 0, xs' >= 0, x >= 0, z1 >= 0, z = 1 + x' + xs', z'' >= 0 loop(z, z', z'', z1) -{ 1 }-> loop[Ite](!EQ(x'', y'), 1 + (1 + x'') + xs', 1 + (1 + y') + xs, z'', z1) :|: z = 1 + (1 + x'') + xs', xs >= 0, z' = 1 + (1 + y') + xs, xs' >= 0, y' >= 0, z1 >= 0, x'' >= 0, z'' >= 0 loop(z, z', z'', z1) -{ 1 }-> 2 :|: z1 >= 0, z' >= 0, z = 0, z'' >= 0 loop(z, z', z'', z1) -{ 1 }-> 1 :|: z = 1 + x + xs, xs >= 0, x >= 0, z1 >= 0, z'' >= 0, z' = 0 loop[Ite](z, z', z'', z1, z2) -{ 0 }-> loop(xs', xs, z1, z2) :|: z = 2, xs >= 0, x' >= 0, xs' >= 0, x >= 0, z' = 1 + x' + xs', z2 >= 0, z'' = 1 + x + xs, z1 >= 0 loop[Ite](z, z', z'', z1, z2) -{ 0 }-> loop(z1, xs, z1, xs) :|: z2 = 1 + x + xs, xs >= 0, z = 1, x >= 0, z' >= 0, z'' >= 0, z1 >= 0 loop[Ite](z, z', z'', z1, z2) -{ 0 }-> 0 :|: z >= 0, z2 >= 0, z' >= 0, z'' >= 0, z1 >= 0 match1(z, z') -{ 1 }-> loop(z, z', z, z') :|: z >= 0, z' >= 0 Function symbols to be analyzed: {loop[Ite],loop}, {match1} Previous analysis results are: !EQ: runtime: O(1) [0], size: O(1) [2] ---------------------------------------- (23) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: !EQ(z, z') -{ 0 }-> s' :|: s' >= 0, s' <= 2, z - 1 >= 0, z' - 1 >= 0 !EQ(z, z') -{ 0 }-> 2 :|: z = 0, z' = 0 !EQ(z, z') -{ 0 }-> 1 :|: z' - 1 >= 0, z = 0 !EQ(z, z') -{ 0 }-> 1 :|: z - 1 >= 0, z' = 0 !EQ(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 loop(z, z', z'', z1) -{ 1 }-> loop[Ite](s, 1 + (1 + x'') + xs', 1 + (1 + y') + xs, z'', z1) :|: s >= 0, s <= 2, z = 1 + (1 + x'') + xs', xs >= 0, z' = 1 + (1 + y') + xs, xs' >= 0, y' >= 0, z1 >= 0, x'' >= 0, z'' >= 0 loop(z, z', z'', z1) -{ 1 }-> loop[Ite](2, 1 + 0 + (z - 1), 1 + 0 + (z' - 1), z'', z1) :|: z' - 1 >= 0, z - 1 >= 0, z1 >= 0, z'' >= 0 loop(z, z', z'', z1) -{ 1 }-> loop[Ite](1, 1 + 0 + (z - 1), 1 + (1 + y'') + xs, z'', z1) :|: xs >= 0, z - 1 >= 0, z' = 1 + (1 + y'') + xs, y'' >= 0, z1 >= 0, z'' >= 0 loop(z, z', z'', z1) -{ 1 }-> loop[Ite](1, 1 + (1 + x1) + xs', 1 + 0 + (z' - 1), z'', z1) :|: z' - 1 >= 0, x1 >= 0, z = 1 + (1 + x1) + xs', xs' >= 0, z1 >= 0, z'' >= 0 loop(z, z', z'', z1) -{ 1 }-> loop[Ite](0, 1 + x' + xs', 1 + x + xs, z'', z1) :|: xs >= 0, z' = 1 + x + xs, x' >= 0, xs' >= 0, x >= 0, z1 >= 0, z = 1 + x' + xs', z'' >= 0 loop(z, z', z'', z1) -{ 1 }-> 2 :|: z1 >= 0, z' >= 0, z = 0, z'' >= 0 loop(z, z', z'', z1) -{ 1 }-> 1 :|: z = 1 + x + xs, xs >= 0, x >= 0, z1 >= 0, z'' >= 0, z' = 0 loop[Ite](z, z', z'', z1, z2) -{ 0 }-> loop(xs', xs, z1, z2) :|: z = 2, xs >= 0, x' >= 0, xs' >= 0, x >= 0, z' = 1 + x' + xs', z2 >= 0, z'' = 1 + x + xs, z1 >= 0 loop[Ite](z, z', z'', z1, z2) -{ 0 }-> loop(z1, xs, z1, xs) :|: z2 = 1 + x + xs, xs >= 0, z = 1, x >= 0, z' >= 0, z'' >= 0, z1 >= 0 loop[Ite](z, z', z'', z1, z2) -{ 0 }-> 0 :|: z >= 0, z2 >= 0, z' >= 0, z'' >= 0, z1 >= 0 match1(z, z') -{ 1 }-> loop(z, z', z, z') :|: z >= 0, z' >= 0 Function symbols to be analyzed: {loop[Ite],loop}, {match1} Previous analysis results are: !EQ: runtime: O(1) [0], size: O(1) [2] ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: loop[Ite] after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 2 Computed SIZE bound using CoFloCo for: loop after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 2 ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: !EQ(z, z') -{ 0 }-> s' :|: s' >= 0, s' <= 2, z - 1 >= 0, z' - 1 >= 0 !EQ(z, z') -{ 0 }-> 2 :|: z = 0, z' = 0 !EQ(z, z') -{ 0 }-> 1 :|: z' - 1 >= 0, z = 0 !EQ(z, z') -{ 0 }-> 1 :|: z - 1 >= 0, z' = 0 !EQ(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 loop(z, z', z'', z1) -{ 1 }-> loop[Ite](s, 1 + (1 + x'') + xs', 1 + (1 + y') + xs, z'', z1) :|: s >= 0, s <= 2, z = 1 + (1 + x'') + xs', xs >= 0, z' = 1 + (1 + y') + xs, xs' >= 0, y' >= 0, z1 >= 0, x'' >= 0, z'' >= 0 loop(z, z', z'', z1) -{ 1 }-> loop[Ite](2, 1 + 0 + (z - 1), 1 + 0 + (z' - 1), z'', z1) :|: z' - 1 >= 0, z - 1 >= 0, z1 >= 0, z'' >= 0 loop(z, z', z'', z1) -{ 1 }-> loop[Ite](1, 1 + 0 + (z - 1), 1 + (1 + y'') + xs, z'', z1) :|: xs >= 0, z - 1 >= 0, z' = 1 + (1 + y'') + xs, y'' >= 0, z1 >= 0, z'' >= 0 loop(z, z', z'', z1) -{ 1 }-> loop[Ite](1, 1 + (1 + x1) + xs', 1 + 0 + (z' - 1), z'', z1) :|: z' - 1 >= 0, x1 >= 0, z = 1 + (1 + x1) + xs', xs' >= 0, z1 >= 0, z'' >= 0 loop(z, z', z'', z1) -{ 1 }-> loop[Ite](0, 1 + x' + xs', 1 + x + xs, z'', z1) :|: xs >= 0, z' = 1 + x + xs, x' >= 0, xs' >= 0, x >= 0, z1 >= 0, z = 1 + x' + xs', z'' >= 0 loop(z, z', z'', z1) -{ 1 }-> 2 :|: z1 >= 0, z' >= 0, z = 0, z'' >= 0 loop(z, z', z'', z1) -{ 1 }-> 1 :|: z = 1 + x + xs, xs >= 0, x >= 0, z1 >= 0, z'' >= 0, z' = 0 loop[Ite](z, z', z'', z1, z2) -{ 0 }-> loop(xs', xs, z1, z2) :|: z = 2, xs >= 0, x' >= 0, xs' >= 0, x >= 0, z' = 1 + x' + xs', z2 >= 0, z'' = 1 + x + xs, z1 >= 0 loop[Ite](z, z', z'', z1, z2) -{ 0 }-> loop(z1, xs, z1, xs) :|: z2 = 1 + x + xs, xs >= 0, z = 1, x >= 0, z' >= 0, z'' >= 0, z1 >= 0 loop[Ite](z, z', z'', z1, z2) -{ 0 }-> 0 :|: z >= 0, z2 >= 0, z' >= 0, z'' >= 0, z1 >= 0 match1(z, z') -{ 1 }-> loop(z, z', z, z') :|: z >= 0, z' >= 0 Function symbols to be analyzed: {loop[Ite],loop}, {match1} Previous analysis results are: !EQ: runtime: O(1) [0], size: O(1) [2] loop[Ite]: runtime: ?, size: O(1) [2] loop: runtime: ?, size: O(1) [2] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: loop[Ite] after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 4 + 3*z + 4*z*z1 + 4*z' + 8*z1*z2 + 6*z2 Computed RUNTIME bound using KoAT for: loop after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 65 + 32*z + 24*z'' + 40*z''*z1 + 30*z1 ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: !EQ(z, z') -{ 0 }-> s' :|: s' >= 0, s' <= 2, z - 1 >= 0, z' - 1 >= 0 !EQ(z, z') -{ 0 }-> 2 :|: z = 0, z' = 0 !EQ(z, z') -{ 0 }-> 1 :|: z' - 1 >= 0, z = 0 !EQ(z, z') -{ 0 }-> 1 :|: z - 1 >= 0, z' = 0 !EQ(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 loop(z, z', z'', z1) -{ 1 }-> loop[Ite](s, 1 + (1 + x'') + xs', 1 + (1 + y') + xs, z'', z1) :|: s >= 0, s <= 2, z = 1 + (1 + x'') + xs', xs >= 0, z' = 1 + (1 + y') + xs, xs' >= 0, y' >= 0, z1 >= 0, x'' >= 0, z'' >= 0 loop(z, z', z'', z1) -{ 1 }-> loop[Ite](2, 1 + 0 + (z - 1), 1 + 0 + (z' - 1), z'', z1) :|: z' - 1 >= 0, z - 1 >= 0, z1 >= 0, z'' >= 0 loop(z, z', z'', z1) -{ 1 }-> loop[Ite](1, 1 + 0 + (z - 1), 1 + (1 + y'') + xs, z'', z1) :|: xs >= 0, z - 1 >= 0, z' = 1 + (1 + y'') + xs, y'' >= 0, z1 >= 0, z'' >= 0 loop(z, z', z'', z1) -{ 1 }-> loop[Ite](1, 1 + (1 + x1) + xs', 1 + 0 + (z' - 1), z'', z1) :|: z' - 1 >= 0, x1 >= 0, z = 1 + (1 + x1) + xs', xs' >= 0, z1 >= 0, z'' >= 0 loop(z, z', z'', z1) -{ 1 }-> loop[Ite](0, 1 + x' + xs', 1 + x + xs, z'', z1) :|: xs >= 0, z' = 1 + x + xs, x' >= 0, xs' >= 0, x >= 0, z1 >= 0, z = 1 + x' + xs', z'' >= 0 loop(z, z', z'', z1) -{ 1 }-> 2 :|: z1 >= 0, z' >= 0, z = 0, z'' >= 0 loop(z, z', z'', z1) -{ 1 }-> 1 :|: z = 1 + x + xs, xs >= 0, x >= 0, z1 >= 0, z'' >= 0, z' = 0 loop[Ite](z, z', z'', z1, z2) -{ 0 }-> loop(xs', xs, z1, z2) :|: z = 2, xs >= 0, x' >= 0, xs' >= 0, x >= 0, z' = 1 + x' + xs', z2 >= 0, z'' = 1 + x + xs, z1 >= 0 loop[Ite](z, z', z'', z1, z2) -{ 0 }-> loop(z1, xs, z1, xs) :|: z2 = 1 + x + xs, xs >= 0, z = 1, x >= 0, z' >= 0, z'' >= 0, z1 >= 0 loop[Ite](z, z', z'', z1, z2) -{ 0 }-> 0 :|: z >= 0, z2 >= 0, z' >= 0, z'' >= 0, z1 >= 0 match1(z, z') -{ 1 }-> loop(z, z', z, z') :|: z >= 0, z' >= 0 Function symbols to be analyzed: {match1} Previous analysis results are: !EQ: runtime: O(1) [0], size: O(1) [2] loop[Ite]: runtime: O(n^2) [4 + 3*z + 4*z*z1 + 4*z' + 8*z1*z2 + 6*z2], size: O(1) [2] loop: runtime: O(n^2) [65 + 32*z + 24*z'' + 40*z''*z1 + 30*z1], size: O(1) [2] ---------------------------------------- (29) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: !EQ(z, z') -{ 0 }-> s' :|: s' >= 0, s' <= 2, z - 1 >= 0, z' - 1 >= 0 !EQ(z, z') -{ 0 }-> 2 :|: z = 0, z' = 0 !EQ(z, z') -{ 0 }-> 1 :|: z' - 1 >= 0, z = 0 !EQ(z, z') -{ 0 }-> 1 :|: z - 1 >= 0, z' = 0 !EQ(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 loop(z, z', z'', z1) -{ 13 + 3*s + 4*s*z'' + 4*x'' + 4*xs' + 8*z''*z1 + 6*z1 }-> s'' :|: s'' >= 0, s'' <= 2, s >= 0, s <= 2, z = 1 + (1 + x'') + xs', xs >= 0, z' = 1 + (1 + y') + xs, xs' >= 0, y' >= 0, z1 >= 0, x'' >= 0, z'' >= 0 loop(z, z', z'', z1) -{ 8 + 4*z + 4*z'' + 8*z''*z1 + 6*z1 }-> s1 :|: s1 >= 0, s1 <= 2, xs >= 0, z - 1 >= 0, z' = 1 + (1 + y'') + xs, y'' >= 0, z1 >= 0, z'' >= 0 loop(z, z', z'', z1) -{ 16 + 4*x1 + 4*xs' + 4*z'' + 8*z''*z1 + 6*z1 }-> s2 :|: s2 >= 0, s2 <= 2, z' - 1 >= 0, x1 >= 0, z = 1 + (1 + x1) + xs', xs' >= 0, z1 >= 0, z'' >= 0 loop(z, z', z'', z1) -{ 11 + 4*z + 8*z'' + 8*z''*z1 + 6*z1 }-> s3 :|: s3 >= 0, s3 <= 2, z' - 1 >= 0, z - 1 >= 0, z1 >= 0, z'' >= 0 loop(z, z', z'', z1) -{ 9 + 4*x' + 4*xs' + 8*z''*z1 + 6*z1 }-> s4 :|: s4 >= 0, s4 <= 2, xs >= 0, z' = 1 + x + xs, x' >= 0, xs' >= 0, x >= 0, z1 >= 0, z = 1 + x' + xs', z'' >= 0 loop(z, z', z'', z1) -{ 1 }-> 2 :|: z1 >= 0, z' >= 0, z = 0, z'' >= 0 loop(z, z', z'', z1) -{ 1 }-> 1 :|: z = 1 + x + xs, xs >= 0, x >= 0, z1 >= 0, z'' >= 0, z' = 0 loop[Ite](z, z', z'', z1, z2) -{ 65 + 30*xs + 40*xs*z1 + 56*z1 }-> s6 :|: s6 >= 0, s6 <= 2, z2 = 1 + x + xs, xs >= 0, z = 1, x >= 0, z' >= 0, z'' >= 0, z1 >= 0 loop[Ite](z, z', z'', z1, z2) -{ 65 + 32*xs' + 24*z1 + 40*z1*z2 + 30*z2 }-> s7 :|: s7 >= 0, s7 <= 2, z = 2, xs >= 0, x' >= 0, xs' >= 0, x >= 0, z' = 1 + x' + xs', z2 >= 0, z'' = 1 + x + xs, z1 >= 0 loop[Ite](z, z', z'', z1, z2) -{ 0 }-> 0 :|: z >= 0, z2 >= 0, z' >= 0, z'' >= 0, z1 >= 0 match1(z, z') -{ 66 + 56*z + 40*z*z' + 30*z' }-> s5 :|: s5 >= 0, s5 <= 2, z >= 0, z' >= 0 Function symbols to be analyzed: {match1} Previous analysis results are: !EQ: runtime: O(1) [0], size: O(1) [2] loop[Ite]: runtime: O(n^2) [4 + 3*z + 4*z*z1 + 4*z' + 8*z1*z2 + 6*z2], size: O(1) [2] loop: runtime: O(n^2) [65 + 32*z + 24*z'' + 40*z''*z1 + 30*z1], size: O(1) [2] ---------------------------------------- (31) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: match1 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 2 ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: !EQ(z, z') -{ 0 }-> s' :|: s' >= 0, s' <= 2, z - 1 >= 0, z' - 1 >= 0 !EQ(z, z') -{ 0 }-> 2 :|: z = 0, z' = 0 !EQ(z, z') -{ 0 }-> 1 :|: z' - 1 >= 0, z = 0 !EQ(z, z') -{ 0 }-> 1 :|: z - 1 >= 0, z' = 0 !EQ(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 loop(z, z', z'', z1) -{ 13 + 3*s + 4*s*z'' + 4*x'' + 4*xs' + 8*z''*z1 + 6*z1 }-> s'' :|: s'' >= 0, s'' <= 2, s >= 0, s <= 2, z = 1 + (1 + x'') + xs', xs >= 0, z' = 1 + (1 + y') + xs, xs' >= 0, y' >= 0, z1 >= 0, x'' >= 0, z'' >= 0 loop(z, z', z'', z1) -{ 8 + 4*z + 4*z'' + 8*z''*z1 + 6*z1 }-> s1 :|: s1 >= 0, s1 <= 2, xs >= 0, z - 1 >= 0, z' = 1 + (1 + y'') + xs, y'' >= 0, z1 >= 0, z'' >= 0 loop(z, z', z'', z1) -{ 16 + 4*x1 + 4*xs' + 4*z'' + 8*z''*z1 + 6*z1 }-> s2 :|: s2 >= 0, s2 <= 2, z' - 1 >= 0, x1 >= 0, z = 1 + (1 + x1) + xs', xs' >= 0, z1 >= 0, z'' >= 0 loop(z, z', z'', z1) -{ 11 + 4*z + 8*z'' + 8*z''*z1 + 6*z1 }-> s3 :|: s3 >= 0, s3 <= 2, z' - 1 >= 0, z - 1 >= 0, z1 >= 0, z'' >= 0 loop(z, z', z'', z1) -{ 9 + 4*x' + 4*xs' + 8*z''*z1 + 6*z1 }-> s4 :|: s4 >= 0, s4 <= 2, xs >= 0, z' = 1 + x + xs, x' >= 0, xs' >= 0, x >= 0, z1 >= 0, z = 1 + x' + xs', z'' >= 0 loop(z, z', z'', z1) -{ 1 }-> 2 :|: z1 >= 0, z' >= 0, z = 0, z'' >= 0 loop(z, z', z'', z1) -{ 1 }-> 1 :|: z = 1 + x + xs, xs >= 0, x >= 0, z1 >= 0, z'' >= 0, z' = 0 loop[Ite](z, z', z'', z1, z2) -{ 65 + 30*xs + 40*xs*z1 + 56*z1 }-> s6 :|: s6 >= 0, s6 <= 2, z2 = 1 + x + xs, xs >= 0, z = 1, x >= 0, z' >= 0, z'' >= 0, z1 >= 0 loop[Ite](z, z', z'', z1, z2) -{ 65 + 32*xs' + 24*z1 + 40*z1*z2 + 30*z2 }-> s7 :|: s7 >= 0, s7 <= 2, z = 2, xs >= 0, x' >= 0, xs' >= 0, x >= 0, z' = 1 + x' + xs', z2 >= 0, z'' = 1 + x + xs, z1 >= 0 loop[Ite](z, z', z'', z1, z2) -{ 0 }-> 0 :|: z >= 0, z2 >= 0, z' >= 0, z'' >= 0, z1 >= 0 match1(z, z') -{ 66 + 56*z + 40*z*z' + 30*z' }-> s5 :|: s5 >= 0, s5 <= 2, z >= 0, z' >= 0 Function symbols to be analyzed: {match1} Previous analysis results are: !EQ: runtime: O(1) [0], size: O(1) [2] loop[Ite]: runtime: O(n^2) [4 + 3*z + 4*z*z1 + 4*z' + 8*z1*z2 + 6*z2], size: O(1) [2] loop: runtime: O(n^2) [65 + 32*z + 24*z'' + 40*z''*z1 + 30*z1], size: O(1) [2] match1: runtime: ?, size: O(1) [2] ---------------------------------------- (33) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: match1 after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 66 + 56*z + 40*z*z' + 30*z' ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: !EQ(z, z') -{ 0 }-> s' :|: s' >= 0, s' <= 2, z - 1 >= 0, z' - 1 >= 0 !EQ(z, z') -{ 0 }-> 2 :|: z = 0, z' = 0 !EQ(z, z') -{ 0 }-> 1 :|: z' - 1 >= 0, z = 0 !EQ(z, z') -{ 0 }-> 1 :|: z - 1 >= 0, z' = 0 !EQ(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 loop(z, z', z'', z1) -{ 13 + 3*s + 4*s*z'' + 4*x'' + 4*xs' + 8*z''*z1 + 6*z1 }-> s'' :|: s'' >= 0, s'' <= 2, s >= 0, s <= 2, z = 1 + (1 + x'') + xs', xs >= 0, z' = 1 + (1 + y') + xs, xs' >= 0, y' >= 0, z1 >= 0, x'' >= 0, z'' >= 0 loop(z, z', z'', z1) -{ 8 + 4*z + 4*z'' + 8*z''*z1 + 6*z1 }-> s1 :|: s1 >= 0, s1 <= 2, xs >= 0, z - 1 >= 0, z' = 1 + (1 + y'') + xs, y'' >= 0, z1 >= 0, z'' >= 0 loop(z, z', z'', z1) -{ 16 + 4*x1 + 4*xs' + 4*z'' + 8*z''*z1 + 6*z1 }-> s2 :|: s2 >= 0, s2 <= 2, z' - 1 >= 0, x1 >= 0, z = 1 + (1 + x1) + xs', xs' >= 0, z1 >= 0, z'' >= 0 loop(z, z', z'', z1) -{ 11 + 4*z + 8*z'' + 8*z''*z1 + 6*z1 }-> s3 :|: s3 >= 0, s3 <= 2, z' - 1 >= 0, z - 1 >= 0, z1 >= 0, z'' >= 0 loop(z, z', z'', z1) -{ 9 + 4*x' + 4*xs' + 8*z''*z1 + 6*z1 }-> s4 :|: s4 >= 0, s4 <= 2, xs >= 0, z' = 1 + x + xs, x' >= 0, xs' >= 0, x >= 0, z1 >= 0, z = 1 + x' + xs', z'' >= 0 loop(z, z', z'', z1) -{ 1 }-> 2 :|: z1 >= 0, z' >= 0, z = 0, z'' >= 0 loop(z, z', z'', z1) -{ 1 }-> 1 :|: z = 1 + x + xs, xs >= 0, x >= 0, z1 >= 0, z'' >= 0, z' = 0 loop[Ite](z, z', z'', z1, z2) -{ 65 + 30*xs + 40*xs*z1 + 56*z1 }-> s6 :|: s6 >= 0, s6 <= 2, z2 = 1 + x + xs, xs >= 0, z = 1, x >= 0, z' >= 0, z'' >= 0, z1 >= 0 loop[Ite](z, z', z'', z1, z2) -{ 65 + 32*xs' + 24*z1 + 40*z1*z2 + 30*z2 }-> s7 :|: s7 >= 0, s7 <= 2, z = 2, xs >= 0, x' >= 0, xs' >= 0, x >= 0, z' = 1 + x' + xs', z2 >= 0, z'' = 1 + x + xs, z1 >= 0 loop[Ite](z, z', z'', z1, z2) -{ 0 }-> 0 :|: z >= 0, z2 >= 0, z' >= 0, z'' >= 0, z1 >= 0 match1(z, z') -{ 66 + 56*z + 40*z*z' + 30*z' }-> s5 :|: s5 >= 0, s5 <= 2, z >= 0, z' >= 0 Function symbols to be analyzed: Previous analysis results are: !EQ: runtime: O(1) [0], size: O(1) [2] loop[Ite]: runtime: O(n^2) [4 + 3*z + 4*z*z1 + 4*z' + 8*z1*z2 + 6*z2], size: O(1) [2] loop: runtime: O(n^2) [65 + 32*z + 24*z'' + 40*z''*z1 + 30*z1], size: O(1) [2] match1: runtime: O(n^2) [66 + 56*z + 40*z*z' + 30*z'], size: O(1) [2] ---------------------------------------- (35) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (36) BOUNDS(1, n^2) ---------------------------------------- (37) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (38) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: loop(Cons(x, xs), Nil, pp, ss) -> False loop(Cons(x', xs'), Cons(x, xs), pp, ss) -> loop[Ite](!EQ(x', x), Cons(x', xs'), Cons(x, xs), pp, ss) loop(Nil, s, pp, ss) -> True match1(p, s) -> loop(p, s, p, s) The (relative) TRS S consists of the following rules: !EQ(S(x), S(y)) -> !EQ(x, y) !EQ(0', S(y)) -> False !EQ(S(x), 0') -> False !EQ(0', 0') -> True loop[Ite](False, p, s, pp, Cons(x, xs)) -> loop(pp, xs, pp, xs) loop[Ite](True, Cons(x', xs'), Cons(x, xs), pp, ss) -> loop(xs', xs, pp, ss) Rewrite Strategy: INNERMOST ---------------------------------------- (39) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (40) Obligation: Innermost TRS: Rules: loop(Cons(x, xs), Nil, pp, ss) -> False loop(Cons(x', xs'), Cons(x, xs), pp, ss) -> loop[Ite](!EQ(x', x), Cons(x', xs'), Cons(x, xs), pp, ss) loop(Nil, s, pp, ss) -> True match1(p, s) -> loop(p, s, p, s) !EQ(S(x), S(y)) -> !EQ(x, y) !EQ(0', S(y)) -> False !EQ(S(x), 0') -> False !EQ(0', 0') -> True loop[Ite](False, p, s, pp, Cons(x, xs)) -> loop(pp, xs, pp, xs) loop[Ite](True, Cons(x', xs'), Cons(x, xs), pp, ss) -> loop(xs', xs, pp, ss) Types: loop :: Cons:Nil -> Cons:Nil -> Cons:Nil -> Cons:Nil -> False:True Cons :: S:0' -> Cons:Nil -> Cons:Nil Nil :: Cons:Nil False :: False:True loop[Ite] :: False:True -> Cons:Nil -> Cons:Nil -> Cons:Nil -> Cons:Nil -> False:True !EQ :: S:0' -> S:0' -> False:True True :: False:True match1 :: Cons:Nil -> Cons:Nil -> False:True S :: S:0' -> S:0' 0' :: S:0' hole_False:True1_0 :: False:True hole_Cons:Nil2_0 :: Cons:Nil hole_S:0'3_0 :: S:0' gen_Cons:Nil4_0 :: Nat -> Cons:Nil gen_S:0'5_0 :: Nat -> S:0' ---------------------------------------- (41) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: loop, !EQ They will be analysed ascendingly in the following order: !EQ < loop ---------------------------------------- (42) Obligation: Innermost TRS: Rules: loop(Cons(x, xs), Nil, pp, ss) -> False loop(Cons(x', xs'), Cons(x, xs), pp, ss) -> loop[Ite](!EQ(x', x), Cons(x', xs'), Cons(x, xs), pp, ss) loop(Nil, s, pp, ss) -> True match1(p, s) -> loop(p, s, p, s) !EQ(S(x), S(y)) -> !EQ(x, y) !EQ(0', S(y)) -> False !EQ(S(x), 0') -> False !EQ(0', 0') -> True loop[Ite](False, p, s, pp, Cons(x, xs)) -> loop(pp, xs, pp, xs) loop[Ite](True, Cons(x', xs'), Cons(x, xs), pp, ss) -> loop(xs', xs, pp, ss) Types: loop :: Cons:Nil -> Cons:Nil -> Cons:Nil -> Cons:Nil -> False:True Cons :: S:0' -> Cons:Nil -> Cons:Nil Nil :: Cons:Nil False :: False:True loop[Ite] :: False:True -> Cons:Nil -> Cons:Nil -> Cons:Nil -> Cons:Nil -> False:True !EQ :: S:0' -> S:0' -> False:True True :: False:True match1 :: Cons:Nil -> Cons:Nil -> False:True S :: S:0' -> S:0' 0' :: S:0' hole_False:True1_0 :: False:True hole_Cons:Nil2_0 :: Cons:Nil hole_S:0'3_0 :: S:0' gen_Cons:Nil4_0 :: Nat -> Cons:Nil gen_S:0'5_0 :: Nat -> S:0' Generator Equations: gen_Cons:Nil4_0(0) <=> Nil gen_Cons:Nil4_0(+(x, 1)) <=> Cons(0', gen_Cons:Nil4_0(x)) gen_S:0'5_0(0) <=> 0' gen_S:0'5_0(+(x, 1)) <=> S(gen_S:0'5_0(x)) The following defined symbols remain to be analysed: !EQ, loop They will be analysed ascendingly in the following order: !EQ < loop ---------------------------------------- (43) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: !EQ(gen_S:0'5_0(n7_0), gen_S:0'5_0(+(1, n7_0))) -> False, rt in Omega(0) Induction Base: !EQ(gen_S:0'5_0(0), gen_S:0'5_0(+(1, 0))) ->_R^Omega(0) False Induction Step: !EQ(gen_S:0'5_0(+(n7_0, 1)), gen_S:0'5_0(+(1, +(n7_0, 1)))) ->_R^Omega(0) !EQ(gen_S:0'5_0(n7_0), gen_S:0'5_0(+(1, n7_0))) ->_IH False We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (44) Obligation: Innermost TRS: Rules: loop(Cons(x, xs), Nil, pp, ss) -> False loop(Cons(x', xs'), Cons(x, xs), pp, ss) -> loop[Ite](!EQ(x', x), Cons(x', xs'), Cons(x, xs), pp, ss) loop(Nil, s, pp, ss) -> True match1(p, s) -> loop(p, s, p, s) !EQ(S(x), S(y)) -> !EQ(x, y) !EQ(0', S(y)) -> False !EQ(S(x), 0') -> False !EQ(0', 0') -> True loop[Ite](False, p, s, pp, Cons(x, xs)) -> loop(pp, xs, pp, xs) loop[Ite](True, Cons(x', xs'), Cons(x, xs), pp, ss) -> loop(xs', xs, pp, ss) Types: loop :: Cons:Nil -> Cons:Nil -> Cons:Nil -> Cons:Nil -> False:True Cons :: S:0' -> Cons:Nil -> Cons:Nil Nil :: Cons:Nil False :: False:True loop[Ite] :: False:True -> Cons:Nil -> Cons:Nil -> Cons:Nil -> Cons:Nil -> False:True !EQ :: S:0' -> S:0' -> False:True True :: False:True match1 :: Cons:Nil -> Cons:Nil -> False:True S :: S:0' -> S:0' 0' :: S:0' hole_False:True1_0 :: False:True hole_Cons:Nil2_0 :: Cons:Nil hole_S:0'3_0 :: S:0' gen_Cons:Nil4_0 :: Nat -> Cons:Nil gen_S:0'5_0 :: Nat -> S:0' Lemmas: !EQ(gen_S:0'5_0(n7_0), gen_S:0'5_0(+(1, n7_0))) -> False, rt in Omega(0) Generator Equations: gen_Cons:Nil4_0(0) <=> Nil gen_Cons:Nil4_0(+(x, 1)) <=> Cons(0', gen_Cons:Nil4_0(x)) gen_S:0'5_0(0) <=> 0' gen_S:0'5_0(+(x, 1)) <=> S(gen_S:0'5_0(x)) The following defined symbols remain to be analysed: loop ---------------------------------------- (45) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: loop(gen_Cons:Nil4_0(+(1, n256_0)), gen_Cons:Nil4_0(n256_0), gen_Cons:Nil4_0(c), gen_Cons:Nil4_0(d)) -> False, rt in Omega(1 + n256_0) Induction Base: loop(gen_Cons:Nil4_0(+(1, 0)), gen_Cons:Nil4_0(0), gen_Cons:Nil4_0(c), gen_Cons:Nil4_0(d)) ->_R^Omega(1) False Induction Step: loop(gen_Cons:Nil4_0(+(1, +(n256_0, 1))), gen_Cons:Nil4_0(+(n256_0, 1)), gen_Cons:Nil4_0(c), gen_Cons:Nil4_0(d)) ->_R^Omega(1) loop[Ite](!EQ(0', 0'), Cons(0', gen_Cons:Nil4_0(+(1, n256_0))), Cons(0', gen_Cons:Nil4_0(n256_0)), gen_Cons:Nil4_0(c), gen_Cons:Nil4_0(d)) ->_R^Omega(0) loop[Ite](True, Cons(0', gen_Cons:Nil4_0(+(1, n256_0))), Cons(0', gen_Cons:Nil4_0(n256_0)), gen_Cons:Nil4_0(c), gen_Cons:Nil4_0(d)) ->_R^Omega(0) loop(gen_Cons:Nil4_0(+(1, n256_0)), gen_Cons:Nil4_0(n256_0), gen_Cons:Nil4_0(c), gen_Cons:Nil4_0(d)) ->_IH False We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (46) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: loop(Cons(x, xs), Nil, pp, ss) -> False loop(Cons(x', xs'), Cons(x, xs), pp, ss) -> loop[Ite](!EQ(x', x), Cons(x', xs'), Cons(x, xs), pp, ss) loop(Nil, s, pp, ss) -> True match1(p, s) -> loop(p, s, p, s) !EQ(S(x), S(y)) -> !EQ(x, y) !EQ(0', S(y)) -> False !EQ(S(x), 0') -> False !EQ(0', 0') -> True loop[Ite](False, p, s, pp, Cons(x, xs)) -> loop(pp, xs, pp, xs) loop[Ite](True, Cons(x', xs'), Cons(x, xs), pp, ss) -> loop(xs', xs, pp, ss) Types: loop :: Cons:Nil -> Cons:Nil -> Cons:Nil -> Cons:Nil -> False:True Cons :: S:0' -> Cons:Nil -> Cons:Nil Nil :: Cons:Nil False :: False:True loop[Ite] :: False:True -> Cons:Nil -> Cons:Nil -> Cons:Nil -> Cons:Nil -> False:True !EQ :: S:0' -> S:0' -> False:True True :: False:True match1 :: Cons:Nil -> Cons:Nil -> False:True S :: S:0' -> S:0' 0' :: S:0' hole_False:True1_0 :: False:True hole_Cons:Nil2_0 :: Cons:Nil hole_S:0'3_0 :: S:0' gen_Cons:Nil4_0 :: Nat -> Cons:Nil gen_S:0'5_0 :: Nat -> S:0' Lemmas: !EQ(gen_S:0'5_0(n7_0), gen_S:0'5_0(+(1, n7_0))) -> False, rt in Omega(0) Generator Equations: gen_Cons:Nil4_0(0) <=> Nil gen_Cons:Nil4_0(+(x, 1)) <=> Cons(0', gen_Cons:Nil4_0(x)) gen_S:0'5_0(0) <=> 0' gen_S:0'5_0(+(x, 1)) <=> S(gen_S:0'5_0(x)) The following defined symbols remain to be analysed: loop ---------------------------------------- (47) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (48) BOUNDS(n^1, INF)