/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^2)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). (0) CpxTRS (1) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxWeightedTrs (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxTypedWeightedTrs (5) CompletionProof [UPPER BOUND(ID), 4 ms] (6) CpxTypedWeightedCompleteTrs (7) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedCompleteTrs (9) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (10) CpxRNTS (11) InliningProof [UPPER BOUND(ID), 0 ms] (12) CpxRNTS (13) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxRNTS (15) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxRNTS (17) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (18) CpxRNTS (19) IntTrsBoundProof [UPPER BOUND(ID), 293 ms] (20) CpxRNTS (21) IntTrsBoundProof [UPPER BOUND(ID), 129 ms] (22) CpxRNTS (23) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 212 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 65 ms] (28) CpxRNTS (29) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (30) CpxRNTS (31) IntTrsBoundProof [UPPER BOUND(ID), 127 ms] (32) CpxRNTS (33) IntTrsBoundProof [UPPER BOUND(ID), 53 ms] (34) CpxRNTS (35) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (36) CpxRNTS (37) IntTrsBoundProof [UPPER BOUND(ID), 375 ms] (38) CpxRNTS (39) IntTrsBoundProof [UPPER BOUND(ID), 133 ms] (40) CpxRNTS (41) FinalProof [FINISHED, 0 ms] (42) BOUNDS(1, n^2) (43) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (44) TRS for Loop Detection (45) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (46) BEST (47) proven lower bound (48) LowerBoundPropagationProof [FINISHED, 0 ms] (49) BOUNDS(n^1, INF) (50) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: p(0) -> 0 p(s(x)) -> x le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) minus(x, 0) -> x minus(x, s(y)) -> if(le(x, s(y)), 0, p(minus(x, p(s(y))))) if(true, x, y) -> x if(false, x, y) -> y S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: p(0) -> 0 [1] p(s(x)) -> x [1] le(0, y) -> true [1] le(s(x), 0) -> false [1] le(s(x), s(y)) -> le(x, y) [1] minus(x, 0) -> x [1] minus(x, s(y)) -> if(le(x, s(y)), 0, p(minus(x, p(s(y))))) [1] if(true, x, y) -> x [1] if(false, x, y) -> y [1] Rewrite Strategy: INNERMOST ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: p(0) -> 0 [1] p(s(x)) -> x [1] le(0, y) -> true [1] le(s(x), 0) -> false [1] le(s(x), s(y)) -> le(x, y) [1] minus(x, 0) -> x [1] minus(x, s(y)) -> if(le(x, s(y)), 0, p(minus(x, p(s(y))))) [1] if(true, x, y) -> x [1] if(false, x, y) -> y [1] The TRS has the following type information: p :: 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s le :: 0:s -> 0:s -> true:false true :: true:false false :: true:false minus :: 0:s -> 0:s -> 0:s if :: true:false -> 0:s -> 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (5) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: none (c) The following functions are completely defined: le_2 p_1 minus_2 if_3 Due to the following rules being added: none And the following fresh constants: none ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: p(0) -> 0 [1] p(s(x)) -> x [1] le(0, y) -> true [1] le(s(x), 0) -> false [1] le(s(x), s(y)) -> le(x, y) [1] minus(x, 0) -> x [1] minus(x, s(y)) -> if(le(x, s(y)), 0, p(minus(x, p(s(y))))) [1] if(true, x, y) -> x [1] if(false, x, y) -> y [1] The TRS has the following type information: p :: 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s le :: 0:s -> 0:s -> true:false true :: true:false false :: true:false minus :: 0:s -> 0:s -> 0:s if :: true:false -> 0:s -> 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (7) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: p(0) -> 0 [1] p(s(x)) -> x [1] le(0, y) -> true [1] le(s(x), 0) -> false [1] le(s(x), s(y)) -> le(x, y) [1] minus(x, 0) -> x [1] minus(0, s(y)) -> if(true, 0, p(minus(0, y))) [3] minus(s(x'), s(y)) -> if(le(x', y), 0, p(minus(s(x'), y))) [3] if(true, x, y) -> x [1] if(false, x, y) -> y [1] The TRS has the following type information: p :: 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s le :: 0:s -> 0:s -> true:false true :: true:false false :: true:false minus :: 0:s -> 0:s -> 0:s if :: true:false -> 0:s -> 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (9) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 true => 1 false => 0 ---------------------------------------- (10) Obligation: Complexity RNTS consisting of the following rules: if(z, z', z'') -{ 1 }-> x :|: z' = x, z'' = y, z = 1, x >= 0, y >= 0 if(z, z', z'') -{ 1 }-> y :|: z' = x, z'' = y, x >= 0, y >= 0, z = 0 le(z, z') -{ 1 }-> le(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x le(z, z') -{ 1 }-> 1 :|: y >= 0, z = 0, z' = y le(z, z') -{ 1 }-> 0 :|: x >= 0, z = 1 + x, z' = 0 minus(z, z') -{ 1 }-> x :|: x >= 0, z = x, z' = 0 minus(z, z') -{ 3 }-> if(le(x', y), 0, p(minus(1 + x', y))) :|: z = 1 + x', z' = 1 + y, x' >= 0, y >= 0 minus(z, z') -{ 3 }-> if(1, 0, p(minus(0, y))) :|: z' = 1 + y, y >= 0, z = 0 p(z) -{ 1 }-> x :|: x >= 0, z = 1 + x p(z) -{ 1 }-> 0 :|: z = 0 ---------------------------------------- (11) InliningProof (UPPER BOUND(ID)) Inlined the following terminating rules on right-hand sides where appropriate: p(z) -{ 1 }-> x :|: x >= 0, z = 1 + x p(z) -{ 1 }-> 0 :|: z = 0 if(z, z', z'') -{ 1 }-> y :|: z' = x, z'' = y, x >= 0, y >= 0, z = 0 if(z, z', z'') -{ 1 }-> x :|: z' = x, z'' = y, z = 1, x >= 0, y >= 0 ---------------------------------------- (12) Obligation: Complexity RNTS consisting of the following rules: if(z, z', z'') -{ 1 }-> x :|: z' = x, z'' = y, z = 1, x >= 0, y >= 0 if(z, z', z'') -{ 1 }-> y :|: z' = x, z'' = y, x >= 0, y >= 0, z = 0 le(z, z') -{ 1 }-> le(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x le(z, z') -{ 1 }-> 1 :|: y >= 0, z = 0, z' = y le(z, z') -{ 1 }-> 0 :|: x >= 0, z = 1 + x, z' = 0 minus(z, z') -{ 1 }-> x :|: x >= 0, z = x, z' = 0 minus(z, z') -{ 3 }-> if(le(x', y), 0, p(minus(1 + x', y))) :|: z = 1 + x', z' = 1 + y, x' >= 0, y >= 0 minus(z, z') -{ 3 }-> if(1, 0, p(minus(0, y))) :|: z' = 1 + y, y >= 0, z = 0 p(z) -{ 1 }-> x :|: x >= 0, z = 1 + x p(z) -{ 1 }-> 0 :|: z = 0 ---------------------------------------- (13) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: if(z, z', z'') -{ 1 }-> z' :|: z = 1, z' >= 0, z'' >= 0 if(z, z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0, z = 0 le(z, z') -{ 1 }-> le(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 3 }-> if(le(z - 1, z' - 1), 0, p(minus(1 + (z - 1), z' - 1))) :|: z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 3 }-> if(1, 0, p(minus(0, z' - 1))) :|: z' - 1 >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 ---------------------------------------- (15) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { le } { if } { p } { minus } ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: if(z, z', z'') -{ 1 }-> z' :|: z = 1, z' >= 0, z'' >= 0 if(z, z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0, z = 0 le(z, z') -{ 1 }-> le(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 3 }-> if(le(z - 1, z' - 1), 0, p(minus(1 + (z - 1), z' - 1))) :|: z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 3 }-> if(1, 0, p(minus(0, z' - 1))) :|: z' - 1 >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {le}, {if}, {p}, {minus} ---------------------------------------- (17) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: if(z, z', z'') -{ 1 }-> z' :|: z = 1, z' >= 0, z'' >= 0 if(z, z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0, z = 0 le(z, z') -{ 1 }-> le(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 3 }-> if(le(z - 1, z' - 1), 0, p(minus(1 + (z - 1), z' - 1))) :|: z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 3 }-> if(1, 0, p(minus(0, z' - 1))) :|: z' - 1 >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {le}, {if}, {p}, {minus} ---------------------------------------- (19) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: le after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: if(z, z', z'') -{ 1 }-> z' :|: z = 1, z' >= 0, z'' >= 0 if(z, z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0, z = 0 le(z, z') -{ 1 }-> le(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 3 }-> if(le(z - 1, z' - 1), 0, p(minus(1 + (z - 1), z' - 1))) :|: z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 3 }-> if(1, 0, p(minus(0, z' - 1))) :|: z' - 1 >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {le}, {if}, {p}, {minus} Previous analysis results are: le: runtime: ?, size: O(1) [1] ---------------------------------------- (21) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: le after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + z' ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: if(z, z', z'') -{ 1 }-> z' :|: z = 1, z' >= 0, z'' >= 0 if(z, z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0, z = 0 le(z, z') -{ 1 }-> le(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 3 }-> if(le(z - 1, z' - 1), 0, p(minus(1 + (z - 1), z' - 1))) :|: z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 3 }-> if(1, 0, p(minus(0, z' - 1))) :|: z' - 1 >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {if}, {p}, {minus} Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] ---------------------------------------- (23) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: if(z, z', z'') -{ 1 }-> z' :|: z = 1, z' >= 0, z'' >= 0 if(z, z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0, z = 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 4 + z' }-> if(s', 0, p(minus(1 + (z - 1), z' - 1))) :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 3 }-> if(1, 0, p(minus(0, z' - 1))) :|: z' - 1 >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {if}, {p}, {minus} Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: if after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z' + z'' ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: if(z, z', z'') -{ 1 }-> z' :|: z = 1, z' >= 0, z'' >= 0 if(z, z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0, z = 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 4 + z' }-> if(s', 0, p(minus(1 + (z - 1), z' - 1))) :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 3 }-> if(1, 0, p(minus(0, z' - 1))) :|: z' - 1 >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {if}, {p}, {minus} Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] if: runtime: ?, size: O(n^1) [z' + z''] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: if after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: if(z, z', z'') -{ 1 }-> z' :|: z = 1, z' >= 0, z'' >= 0 if(z, z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0, z = 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 4 + z' }-> if(s', 0, p(minus(1 + (z - 1), z' - 1))) :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 3 }-> if(1, 0, p(minus(0, z' - 1))) :|: z' - 1 >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {p}, {minus} Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] if: runtime: O(1) [1], size: O(n^1) [z' + z''] ---------------------------------------- (29) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: if(z, z', z'') -{ 1 }-> z' :|: z = 1, z' >= 0, z'' >= 0 if(z, z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0, z = 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 4 + z' }-> if(s', 0, p(minus(1 + (z - 1), z' - 1))) :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 3 }-> if(1, 0, p(minus(0, z' - 1))) :|: z' - 1 >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {p}, {minus} Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] if: runtime: O(1) [1], size: O(n^1) [z' + z''] ---------------------------------------- (31) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: p after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: if(z, z', z'') -{ 1 }-> z' :|: z = 1, z' >= 0, z'' >= 0 if(z, z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0, z = 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 4 + z' }-> if(s', 0, p(minus(1 + (z - 1), z' - 1))) :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 3 }-> if(1, 0, p(minus(0, z' - 1))) :|: z' - 1 >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {p}, {minus} Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] if: runtime: O(1) [1], size: O(n^1) [z' + z''] p: runtime: ?, size: O(n^1) [z] ---------------------------------------- (33) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: p after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: if(z, z', z'') -{ 1 }-> z' :|: z = 1, z' >= 0, z'' >= 0 if(z, z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0, z = 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 4 + z' }-> if(s', 0, p(minus(1 + (z - 1), z' - 1))) :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 3 }-> if(1, 0, p(minus(0, z' - 1))) :|: z' - 1 >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {minus} Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] if: runtime: O(1) [1], size: O(n^1) [z' + z''] p: runtime: O(1) [1], size: O(n^1) [z] ---------------------------------------- (35) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: if(z, z', z'') -{ 1 }-> z' :|: z = 1, z' >= 0, z'' >= 0 if(z, z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0, z = 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 4 + z' }-> if(s', 0, p(minus(1 + (z - 1), z' - 1))) :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 3 }-> if(1, 0, p(minus(0, z' - 1))) :|: z' - 1 >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {minus} Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] if: runtime: O(1) [1], size: O(n^1) [z' + z''] p: runtime: O(1) [1], size: O(n^1) [z] ---------------------------------------- (37) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: minus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: if(z, z', z'') -{ 1 }-> z' :|: z = 1, z' >= 0, z'' >= 0 if(z, z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0, z = 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 4 + z' }-> if(s', 0, p(minus(1 + (z - 1), z' - 1))) :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 3 }-> if(1, 0, p(minus(0, z' - 1))) :|: z' - 1 >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {minus} Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] if: runtime: O(1) [1], size: O(n^1) [z' + z''] p: runtime: O(1) [1], size: O(n^1) [z] minus: runtime: ?, size: O(n^1) [z] ---------------------------------------- (39) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: minus after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 1 + 6*z' + z'^2 ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: if(z, z', z'') -{ 1 }-> z' :|: z = 1, z' >= 0, z'' >= 0 if(z, z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0, z = 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 4 + z' }-> if(s', 0, p(minus(1 + (z - 1), z' - 1))) :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 3 }-> if(1, 0, p(minus(0, z' - 1))) :|: z' - 1 >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] if: runtime: O(1) [1], size: O(n^1) [z' + z''] p: runtime: O(1) [1], size: O(n^1) [z] minus: runtime: O(n^2) [1 + 6*z' + z'^2], size: O(n^1) [z] ---------------------------------------- (41) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (42) BOUNDS(1, n^2) ---------------------------------------- (43) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (44) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: p(0) -> 0 p(s(x)) -> x le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) minus(x, 0) -> x minus(x, s(y)) -> if(le(x, s(y)), 0, p(minus(x, p(s(y))))) if(true, x, y) -> x if(false, x, y) -> y S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (45) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence le(s(x), s(y)) ->^+ le(x, y) gives rise to a decreasing loop by considering the right hand sides subterm at position []. The pumping substitution is [x / s(x), y / s(y)]. The result substitution is [ ]. ---------------------------------------- (46) Complex Obligation (BEST) ---------------------------------------- (47) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: p(0) -> 0 p(s(x)) -> x le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) minus(x, 0) -> x minus(x, s(y)) -> if(le(x, s(y)), 0, p(minus(x, p(s(y))))) if(true, x, y) -> x if(false, x, y) -> y S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (48) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (49) BOUNDS(n^1, INF) ---------------------------------------- (50) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: p(0) -> 0 p(s(x)) -> x le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) minus(x, 0) -> x minus(x, s(y)) -> if(le(x, s(y)), 0, p(minus(x, p(s(y))))) if(true, x, y) -> x if(false, x, y) -> y S is empty. Rewrite Strategy: INNERMOST