/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 288 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 171 ms] (14) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: app(nil, k) -> k app(l, nil) -> l app(cons(x, l), k) -> cons(x, app(l, k)) sum(cons(x, nil)) -> cons(x, nil) sum(cons(x, cons(y, l))) -> sum(cons(a(x, y, h), l)) a(h, h, x) -> s(x) a(x, s(y), h) -> a(x, y, s(h)) a(x, s(y), s(z)) -> a(x, y, a(x, s(y), z)) a(s(x), h, z) -> a(x, z, z) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: app(nil, k) -> k app(l, nil) -> l app(cons(x, l), k) -> cons(x, app(l, k)) sum(cons(x, nil)) -> cons(x, nil) sum(cons(x, cons(y, l))) -> sum(cons(a(x, y, h), l)) a(h, h, x) -> s(x) a(x, s(y), h) -> a(x, y, s(h)) a(x, s(y), s(z)) -> a(x, y, a(x, s(y), z)) a(s(x), h, z) -> a(x, z, z) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: Innermost TRS: Rules: app(nil, k) -> k app(l, nil) -> l app(cons(x, l), k) -> cons(x, app(l, k)) sum(cons(x, nil)) -> cons(x, nil) sum(cons(x, cons(y, l))) -> sum(cons(a(x, y, h), l)) a(h, h, x) -> s(x) a(x, s(y), h) -> a(x, y, s(h)) a(x, s(y), s(z)) -> a(x, y, a(x, s(y), z)) a(s(x), h, z) -> a(x, z, z) Types: app :: nil:cons -> nil:cons -> nil:cons nil :: nil:cons cons :: h:s -> nil:cons -> nil:cons sum :: nil:cons -> nil:cons a :: h:s -> h:s -> h:s -> h:s h :: h:s s :: h:s -> h:s hole_nil:cons1_0 :: nil:cons hole_h:s2_0 :: h:s gen_nil:cons3_0 :: Nat -> nil:cons gen_h:s4_0 :: Nat -> h:s ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: app, sum, a They will be analysed ascendingly in the following order: a < sum ---------------------------------------- (6) Obligation: Innermost TRS: Rules: app(nil, k) -> k app(l, nil) -> l app(cons(x, l), k) -> cons(x, app(l, k)) sum(cons(x, nil)) -> cons(x, nil) sum(cons(x, cons(y, l))) -> sum(cons(a(x, y, h), l)) a(h, h, x) -> s(x) a(x, s(y), h) -> a(x, y, s(h)) a(x, s(y), s(z)) -> a(x, y, a(x, s(y), z)) a(s(x), h, z) -> a(x, z, z) Types: app :: nil:cons -> nil:cons -> nil:cons nil :: nil:cons cons :: h:s -> nil:cons -> nil:cons sum :: nil:cons -> nil:cons a :: h:s -> h:s -> h:s -> h:s h :: h:s s :: h:s -> h:s hole_nil:cons1_0 :: nil:cons hole_h:s2_0 :: h:s gen_nil:cons3_0 :: Nat -> nil:cons gen_h:s4_0 :: Nat -> h:s Generator Equations: gen_nil:cons3_0(0) <=> nil gen_nil:cons3_0(+(x, 1)) <=> cons(h, gen_nil:cons3_0(x)) gen_h:s4_0(0) <=> h gen_h:s4_0(+(x, 1)) <=> s(gen_h:s4_0(x)) The following defined symbols remain to be analysed: app, sum, a They will be analysed ascendingly in the following order: a < sum ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: app(gen_nil:cons3_0(n6_0), gen_nil:cons3_0(b)) -> gen_nil:cons3_0(+(n6_0, b)), rt in Omega(1 + n6_0) Induction Base: app(gen_nil:cons3_0(0), gen_nil:cons3_0(b)) ->_R^Omega(1) gen_nil:cons3_0(b) Induction Step: app(gen_nil:cons3_0(+(n6_0, 1)), gen_nil:cons3_0(b)) ->_R^Omega(1) cons(h, app(gen_nil:cons3_0(n6_0), gen_nil:cons3_0(b))) ->_IH cons(h, gen_nil:cons3_0(+(b, c7_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: app(nil, k) -> k app(l, nil) -> l app(cons(x, l), k) -> cons(x, app(l, k)) sum(cons(x, nil)) -> cons(x, nil) sum(cons(x, cons(y, l))) -> sum(cons(a(x, y, h), l)) a(h, h, x) -> s(x) a(x, s(y), h) -> a(x, y, s(h)) a(x, s(y), s(z)) -> a(x, y, a(x, s(y), z)) a(s(x), h, z) -> a(x, z, z) Types: app :: nil:cons -> nil:cons -> nil:cons nil :: nil:cons cons :: h:s -> nil:cons -> nil:cons sum :: nil:cons -> nil:cons a :: h:s -> h:s -> h:s -> h:s h :: h:s s :: h:s -> h:s hole_nil:cons1_0 :: nil:cons hole_h:s2_0 :: h:s gen_nil:cons3_0 :: Nat -> nil:cons gen_h:s4_0 :: Nat -> h:s Generator Equations: gen_nil:cons3_0(0) <=> nil gen_nil:cons3_0(+(x, 1)) <=> cons(h, gen_nil:cons3_0(x)) gen_h:s4_0(0) <=> h gen_h:s4_0(+(x, 1)) <=> s(gen_h:s4_0(x)) The following defined symbols remain to be analysed: app, sum, a They will be analysed ascendingly in the following order: a < sum ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Innermost TRS: Rules: app(nil, k) -> k app(l, nil) -> l app(cons(x, l), k) -> cons(x, app(l, k)) sum(cons(x, nil)) -> cons(x, nil) sum(cons(x, cons(y, l))) -> sum(cons(a(x, y, h), l)) a(h, h, x) -> s(x) a(x, s(y), h) -> a(x, y, s(h)) a(x, s(y), s(z)) -> a(x, y, a(x, s(y), z)) a(s(x), h, z) -> a(x, z, z) Types: app :: nil:cons -> nil:cons -> nil:cons nil :: nil:cons cons :: h:s -> nil:cons -> nil:cons sum :: nil:cons -> nil:cons a :: h:s -> h:s -> h:s -> h:s h :: h:s s :: h:s -> h:s hole_nil:cons1_0 :: nil:cons hole_h:s2_0 :: h:s gen_nil:cons3_0 :: Nat -> nil:cons gen_h:s4_0 :: Nat -> h:s Lemmas: app(gen_nil:cons3_0(n6_0), gen_nil:cons3_0(b)) -> gen_nil:cons3_0(+(n6_0, b)), rt in Omega(1 + n6_0) Generator Equations: gen_nil:cons3_0(0) <=> nil gen_nil:cons3_0(+(x, 1)) <=> cons(h, gen_nil:cons3_0(x)) gen_h:s4_0(0) <=> h gen_h:s4_0(+(x, 1)) <=> s(gen_h:s4_0(x)) The following defined symbols remain to be analysed: a, sum They will be analysed ascendingly in the following order: a < sum ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: a(gen_h:s4_0(n694_0), gen_h:s4_0(0), gen_h:s4_0(0)) -> gen_h:s4_0(1), rt in Omega(1 + n694_0) Induction Base: a(gen_h:s4_0(0), gen_h:s4_0(0), gen_h:s4_0(0)) ->_R^Omega(1) s(gen_h:s4_0(0)) Induction Step: a(gen_h:s4_0(+(n694_0, 1)), gen_h:s4_0(0), gen_h:s4_0(0)) ->_R^Omega(1) a(gen_h:s4_0(n694_0), gen_h:s4_0(0), gen_h:s4_0(0)) ->_IH gen_h:s4_0(1) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: Innermost TRS: Rules: app(nil, k) -> k app(l, nil) -> l app(cons(x, l), k) -> cons(x, app(l, k)) sum(cons(x, nil)) -> cons(x, nil) sum(cons(x, cons(y, l))) -> sum(cons(a(x, y, h), l)) a(h, h, x) -> s(x) a(x, s(y), h) -> a(x, y, s(h)) a(x, s(y), s(z)) -> a(x, y, a(x, s(y), z)) a(s(x), h, z) -> a(x, z, z) Types: app :: nil:cons -> nil:cons -> nil:cons nil :: nil:cons cons :: h:s -> nil:cons -> nil:cons sum :: nil:cons -> nil:cons a :: h:s -> h:s -> h:s -> h:s h :: h:s s :: h:s -> h:s hole_nil:cons1_0 :: nil:cons hole_h:s2_0 :: h:s gen_nil:cons3_0 :: Nat -> nil:cons gen_h:s4_0 :: Nat -> h:s Lemmas: app(gen_nil:cons3_0(n6_0), gen_nil:cons3_0(b)) -> gen_nil:cons3_0(+(n6_0, b)), rt in Omega(1 + n6_0) a(gen_h:s4_0(n694_0), gen_h:s4_0(0), gen_h:s4_0(0)) -> gen_h:s4_0(1), rt in Omega(1 + n694_0) Generator Equations: gen_nil:cons3_0(0) <=> nil gen_nil:cons3_0(+(x, 1)) <=> cons(h, gen_nil:cons3_0(x)) gen_h:s4_0(0) <=> h gen_h:s4_0(+(x, 1)) <=> s(gen_h:s4_0(x)) The following defined symbols remain to be analysed: sum