/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (2) TRS for Loop Detection (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (4) BEST (5) proven lower bound (6) LowerBoundPropagationProof [FINISHED, 0 ms] (7) BOUNDS(n^1, INF) (8) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: lcm(x, y) -> lcmIter(x, y, 0, times(x, y)) lcmIter(x, y, z, u) -> if(or(ge(0, x), ge(z, u)), x, y, z, u) if(true, x, y, z, u) -> z if(false, x, y, z, u) -> if2(divisible(z, y), x, y, z, u) if2(true, x, y, z, u) -> z if2(false, x, y, z, u) -> lcmIter(x, y, plus(x, z), u) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(x, y) -> ifTimes(ge(0, x), x, y) ifTimes(true, x, y) -> 0 ifTimes(false, x, y) -> plus(y, times(y, p(x))) p(s(x)) -> x p(0) -> s(s(0)) ge(x, 0) -> true ge(0, s(y)) -> false ge(s(x), s(y)) -> ge(x, y) or(true, y) -> true or(false, y) -> y divisible(0, s(y)) -> true divisible(s(x), s(y)) -> div(s(x), s(y), s(y)) div(x, y, 0) -> divisible(x, y) div(0, y, s(z)) -> false div(s(x), y, s(z)) -> div(x, y, z) a -> b a -> c S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (2) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: lcm(x, y) -> lcmIter(x, y, 0, times(x, y)) lcmIter(x, y, z, u) -> if(or(ge(0, x), ge(z, u)), x, y, z, u) if(true, x, y, z, u) -> z if(false, x, y, z, u) -> if2(divisible(z, y), x, y, z, u) if2(true, x, y, z, u) -> z if2(false, x, y, z, u) -> lcmIter(x, y, plus(x, z), u) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(x, y) -> ifTimes(ge(0, x), x, y) ifTimes(true, x, y) -> 0 ifTimes(false, x, y) -> plus(y, times(y, p(x))) p(s(x)) -> x p(0) -> s(s(0)) ge(x, 0) -> true ge(0, s(y)) -> false ge(s(x), s(y)) -> ge(x, y) or(true, y) -> true or(false, y) -> y divisible(0, s(y)) -> true divisible(s(x), s(y)) -> div(s(x), s(y), s(y)) div(x, y, 0) -> divisible(x, y) div(0, y, s(z)) -> false div(s(x), y, s(z)) -> div(x, y, z) a -> b a -> c S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence div(s(x), y, s(z)) ->^+ div(x, y, z) gives rise to a decreasing loop by considering the right hand sides subterm at position []. The pumping substitution is [x / s(x), z / s(z)]. The result substitution is [ ]. ---------------------------------------- (4) Complex Obligation (BEST) ---------------------------------------- (5) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: lcm(x, y) -> lcmIter(x, y, 0, times(x, y)) lcmIter(x, y, z, u) -> if(or(ge(0, x), ge(z, u)), x, y, z, u) if(true, x, y, z, u) -> z if(false, x, y, z, u) -> if2(divisible(z, y), x, y, z, u) if2(true, x, y, z, u) -> z if2(false, x, y, z, u) -> lcmIter(x, y, plus(x, z), u) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(x, y) -> ifTimes(ge(0, x), x, y) ifTimes(true, x, y) -> 0 ifTimes(false, x, y) -> plus(y, times(y, p(x))) p(s(x)) -> x p(0) -> s(s(0)) ge(x, 0) -> true ge(0, s(y)) -> false ge(s(x), s(y)) -> ge(x, y) or(true, y) -> true or(false, y) -> y divisible(0, s(y)) -> true divisible(s(x), s(y)) -> div(s(x), s(y), s(y)) div(x, y, 0) -> divisible(x, y) div(0, y, s(z)) -> false div(s(x), y, s(z)) -> div(x, y, z) a -> b a -> c S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (6) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (7) BOUNDS(n^1, INF) ---------------------------------------- (8) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: lcm(x, y) -> lcmIter(x, y, 0, times(x, y)) lcmIter(x, y, z, u) -> if(or(ge(0, x), ge(z, u)), x, y, z, u) if(true, x, y, z, u) -> z if(false, x, y, z, u) -> if2(divisible(z, y), x, y, z, u) if2(true, x, y, z, u) -> z if2(false, x, y, z, u) -> lcmIter(x, y, plus(x, z), u) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(x, y) -> ifTimes(ge(0, x), x, y) ifTimes(true, x, y) -> 0 ifTimes(false, x, y) -> plus(y, times(y, p(x))) p(s(x)) -> x p(0) -> s(s(0)) ge(x, 0) -> true ge(0, s(y)) -> false ge(s(x), s(y)) -> ge(x, y) or(true, y) -> true or(false, y) -> y divisible(0, s(y)) -> true divisible(s(x), s(y)) -> div(s(x), s(y), s(y)) div(x, y, 0) -> divisible(x, y) div(0, y, s(z)) -> false div(s(x), y, s(z)) -> div(x, y, z) a -> b a -> c S is empty. Rewrite Strategy: INNERMOST