/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (2) CdtProblem (3) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CdtProblem (5) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CdtProblem (9) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 42 ms] (10) CdtProblem (11) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (12) BOUNDS(1, 1) (13) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (14) TRS for Loop Detection (15) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (16) BEST (17) proven lower bound (18) LowerBoundPropagationProof [FINISHED, 0 ms] (19) BOUNDS(n^1, INF) (20) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: or(true, y) -> true or(x, true) -> true or(false, false) -> false mem(x, nil) -> false mem(x, set(y)) -> =(x, y) mem(x, union(y, z)) -> or(mem(x, y), mem(x, z)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (2) Obligation: Complexity Dependency Tuples Problem Rules: or(true, z0) -> true or(z0, true) -> true or(false, false) -> false mem(z0, nil) -> false mem(z0, set(z1)) -> =(z0, z1) mem(z0, union(z1, z2)) -> or(mem(z0, z1), mem(z0, z2)) Tuples: OR(true, z0) -> c OR(z0, true) -> c1 OR(false, false) -> c2 MEM(z0, nil) -> c3 MEM(z0, set(z1)) -> c4 MEM(z0, union(z1, z2)) -> c5(OR(mem(z0, z1), mem(z0, z2)), MEM(z0, z1), MEM(z0, z2)) S tuples: OR(true, z0) -> c OR(z0, true) -> c1 OR(false, false) -> c2 MEM(z0, nil) -> c3 MEM(z0, set(z1)) -> c4 MEM(z0, union(z1, z2)) -> c5(OR(mem(z0, z1), mem(z0, z2)), MEM(z0, z1), MEM(z0, z2)) K tuples:none Defined Rule Symbols: or_2, mem_2 Defined Pair Symbols: OR_2, MEM_2 Compound Symbols: c, c1, c2, c3, c4, c5_3 ---------------------------------------- (3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 5 trailing nodes: OR(false, false) -> c2 OR(true, z0) -> c MEM(z0, nil) -> c3 OR(z0, true) -> c1 MEM(z0, set(z1)) -> c4 ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: or(true, z0) -> true or(z0, true) -> true or(false, false) -> false mem(z0, nil) -> false mem(z0, set(z1)) -> =(z0, z1) mem(z0, union(z1, z2)) -> or(mem(z0, z1), mem(z0, z2)) Tuples: MEM(z0, union(z1, z2)) -> c5(OR(mem(z0, z1), mem(z0, z2)), MEM(z0, z1), MEM(z0, z2)) S tuples: MEM(z0, union(z1, z2)) -> c5(OR(mem(z0, z1), mem(z0, z2)), MEM(z0, z1), MEM(z0, z2)) K tuples:none Defined Rule Symbols: or_2, mem_2 Defined Pair Symbols: MEM_2 Compound Symbols: c5_3 ---------------------------------------- (5) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing tuple parts ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: or(true, z0) -> true or(z0, true) -> true or(false, false) -> false mem(z0, nil) -> false mem(z0, set(z1)) -> =(z0, z1) mem(z0, union(z1, z2)) -> or(mem(z0, z1), mem(z0, z2)) Tuples: MEM(z0, union(z1, z2)) -> c5(MEM(z0, z1), MEM(z0, z2)) S tuples: MEM(z0, union(z1, z2)) -> c5(MEM(z0, z1), MEM(z0, z2)) K tuples:none Defined Rule Symbols: or_2, mem_2 Defined Pair Symbols: MEM_2 Compound Symbols: c5_2 ---------------------------------------- (7) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: or(true, z0) -> true or(z0, true) -> true or(false, false) -> false mem(z0, nil) -> false mem(z0, set(z1)) -> =(z0, z1) mem(z0, union(z1, z2)) -> or(mem(z0, z1), mem(z0, z2)) ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: MEM(z0, union(z1, z2)) -> c5(MEM(z0, z1), MEM(z0, z2)) S tuples: MEM(z0, union(z1, z2)) -> c5(MEM(z0, z1), MEM(z0, z2)) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: MEM_2 Compound Symbols: c5_2 ---------------------------------------- (9) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. MEM(z0, union(z1, z2)) -> c5(MEM(z0, z1), MEM(z0, z2)) We considered the (Usable) Rules:none And the Tuples: MEM(z0, union(z1, z2)) -> c5(MEM(z0, z1), MEM(z0, z2)) The order we found is given by the following interpretation: Polynomial interpretation : POL(MEM(x_1, x_2)) = x_2 POL(c5(x_1, x_2)) = x_1 + x_2 POL(union(x_1, x_2)) = [1] + x_1 + x_2 ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: MEM(z0, union(z1, z2)) -> c5(MEM(z0, z1), MEM(z0, z2)) S tuples:none K tuples: MEM(z0, union(z1, z2)) -> c5(MEM(z0, z1), MEM(z0, z2)) Defined Rule Symbols:none Defined Pair Symbols: MEM_2 Compound Symbols: c5_2 ---------------------------------------- (11) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (12) BOUNDS(1, 1) ---------------------------------------- (13) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (14) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: or(true, y) -> true or(x, true) -> true or(false, false) -> false mem(x, nil) -> false mem(x, set(y)) -> =(x, y) mem(x, union(y, z)) -> or(mem(x, y), mem(x, z)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (15) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence mem(x, union(y, z)) ->^+ or(mem(x, y), mem(x, z)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [y / union(y, z)]. The result substitution is [ ]. ---------------------------------------- (16) Complex Obligation (BEST) ---------------------------------------- (17) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: or(true, y) -> true or(x, true) -> true or(false, false) -> false mem(x, nil) -> false mem(x, set(y)) -> =(x, y) mem(x, union(y, z)) -> or(mem(x, y), mem(x, z)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (18) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (19) BOUNDS(n^1, INF) ---------------------------------------- (20) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: or(true, y) -> true or(x, true) -> true or(false, false) -> false mem(x, nil) -> false mem(x, set(y)) -> =(x, y) mem(x, union(y, z)) -> or(mem(x, y), mem(x, z)) S is empty. Rewrite Strategy: INNERMOST