/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). (0) CpxRelTRS (1) STerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 286 ms] (2) CpxRelTRS (3) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxRelTRS (5) SlicingProof [LOWER BOUND(ID), 0 ms] (6) CpxRelTRS (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) typed CpxTrs (9) OrderProof [LOWER BOUND(ID), 6 ms] (10) typed CpxTrs (11) RewriteLemmaProof [LOWER BOUND(ID), 11.7 s] (12) proven lower bound (13) LowerBoundPropagationProof [FINISHED, 0 ms] (14) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: rewrite(Op(Val(n), y)) -> Op(rewrite(y), Val(n)) rewrite(Op(Op(x, y), y')) -> rewrite[Let](Op(Op(x, y), y'), Op(x, y), rewrite(x)) rewrite(Val(n)) -> Val(n) second(Op(x, y)) -> y isOp(Val(n)) -> False isOp(Op(x, y)) -> True first(Val(n)) -> Val(n) first(Op(x, y)) -> x assrewrite(exp) -> rewrite(exp) The (relative) TRS S consists of the following rules: rewrite[Let](exp, Op(x, y), a1) -> rewrite[Let][Let](exp, Op(x, y), a1, rewrite(y)) rewrite[Let][Let](Op(x, y), opab, a1, b1) -> rewrite[Let][Let][Let](Op(x, y), a1, b1, rewrite(y)) rewrite[Let][Let][Let](exp, a1, b1, c1) -> rewrite(Op(a1, Op(b1, rewrite(c1)))) Rewrite Strategy: INNERMOST ---------------------------------------- (1) STerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved termination of relative rules ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: rewrite(Op(Val(n), y)) -> Op(rewrite(y), Val(n)) rewrite(Op(Op(x, y), y')) -> rewrite[Let](Op(Op(x, y), y'), Op(x, y), rewrite(x)) rewrite(Val(n)) -> Val(n) second(Op(x, y)) -> y isOp(Val(n)) -> False isOp(Op(x, y)) -> True first(Val(n)) -> Val(n) first(Op(x, y)) -> x assrewrite(exp) -> rewrite(exp) The (relative) TRS S consists of the following rules: rewrite[Let](exp, Op(x, y), a1) -> rewrite[Let][Let](exp, Op(x, y), a1, rewrite(y)) rewrite[Let][Let](Op(x, y), opab, a1, b1) -> rewrite[Let][Let][Let](Op(x, y), a1, b1, rewrite(y)) rewrite[Let][Let][Let](exp, a1, b1, c1) -> rewrite(Op(a1, Op(b1, rewrite(c1)))) Rewrite Strategy: INNERMOST ---------------------------------------- (3) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: rewrite(Op(Val(n), y)) -> Op(rewrite(y), Val(n)) rewrite(Op(Op(x, y), y')) -> rewrite[Let](Op(Op(x, y), y'), Op(x, y), rewrite(x)) rewrite(Val(n)) -> Val(n) second(Op(x, y)) -> y isOp(Val(n)) -> False isOp(Op(x, y)) -> True first(Val(n)) -> Val(n) first(Op(x, y)) -> x assrewrite(exp) -> rewrite(exp) The (relative) TRS S consists of the following rules: rewrite[Let](exp, Op(x, y), a1) -> rewrite[Let][Let](exp, Op(x, y), a1, rewrite(y)) rewrite[Let][Let](Op(x, y), opab, a1, b1) -> rewrite[Let][Let][Let](Op(x, y), a1, b1, rewrite(y)) rewrite[Let][Let][Let](exp, a1, b1, c1) -> rewrite(Op(a1, Op(b1, rewrite(c1)))) Rewrite Strategy: INNERMOST ---------------------------------------- (5) SlicingProof (LOWER BOUND(ID)) Sliced the following arguments: Val/0 rewrite[Let][Let]/1 rewrite[Let][Let][Let]/0 ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: rewrite(Op(Val, y)) -> Op(rewrite(y), Val) rewrite(Op(Op(x, y), y')) -> rewrite[Let](Op(Op(x, y), y'), Op(x, y), rewrite(x)) rewrite(Val) -> Val second(Op(x, y)) -> y isOp(Val) -> False isOp(Op(x, y)) -> True first(Val) -> Val first(Op(x, y)) -> x assrewrite(exp) -> rewrite(exp) The (relative) TRS S consists of the following rules: rewrite[Let](exp, Op(x, y), a1) -> rewrite[Let][Let](exp, a1, rewrite(y)) rewrite[Let][Let](Op(x, y), a1, b1) -> rewrite[Let][Let][Let](a1, b1, rewrite(y)) rewrite[Let][Let][Let](a1, b1, c1) -> rewrite(Op(a1, Op(b1, rewrite(c1)))) Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Innermost TRS: Rules: rewrite(Op(Val, y)) -> Op(rewrite(y), Val) rewrite(Op(Op(x, y), y')) -> rewrite[Let](Op(Op(x, y), y'), Op(x, y), rewrite(x)) rewrite(Val) -> Val second(Op(x, y)) -> y isOp(Val) -> False isOp(Op(x, y)) -> True first(Val) -> Val first(Op(x, y)) -> x assrewrite(exp) -> rewrite(exp) rewrite[Let](exp, Op(x, y), a1) -> rewrite[Let][Let](exp, a1, rewrite(y)) rewrite[Let][Let](Op(x, y), a1, b1) -> rewrite[Let][Let][Let](a1, b1, rewrite(y)) rewrite[Let][Let][Let](a1, b1, c1) -> rewrite(Op(a1, Op(b1, rewrite(c1)))) Types: rewrite :: Val:Op -> Val:Op Op :: Val:Op -> Val:Op -> Val:Op Val :: Val:Op rewrite[Let] :: Val:Op -> Val:Op -> Val:Op -> Val:Op second :: Val:Op -> Val:Op isOp :: Val:Op -> False:True False :: False:True True :: False:True first :: Val:Op -> Val:Op assrewrite :: Val:Op -> Val:Op rewrite[Let][Let] :: Val:Op -> Val:Op -> Val:Op -> Val:Op rewrite[Let][Let][Let] :: Val:Op -> Val:Op -> Val:Op -> Val:Op hole_Val:Op1_0 :: Val:Op hole_False:True2_0 :: False:True gen_Val:Op3_0 :: Nat -> Val:Op ---------------------------------------- (9) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: rewrite ---------------------------------------- (10) Obligation: Innermost TRS: Rules: rewrite(Op(Val, y)) -> Op(rewrite(y), Val) rewrite(Op(Op(x, y), y')) -> rewrite[Let](Op(Op(x, y), y'), Op(x, y), rewrite(x)) rewrite(Val) -> Val second(Op(x, y)) -> y isOp(Val) -> False isOp(Op(x, y)) -> True first(Val) -> Val first(Op(x, y)) -> x assrewrite(exp) -> rewrite(exp) rewrite[Let](exp, Op(x, y), a1) -> rewrite[Let][Let](exp, a1, rewrite(y)) rewrite[Let][Let](Op(x, y), a1, b1) -> rewrite[Let][Let][Let](a1, b1, rewrite(y)) rewrite[Let][Let][Let](a1, b1, c1) -> rewrite(Op(a1, Op(b1, rewrite(c1)))) Types: rewrite :: Val:Op -> Val:Op Op :: Val:Op -> Val:Op -> Val:Op Val :: Val:Op rewrite[Let] :: Val:Op -> Val:Op -> Val:Op -> Val:Op second :: Val:Op -> Val:Op isOp :: Val:Op -> False:True False :: False:True True :: False:True first :: Val:Op -> Val:Op assrewrite :: Val:Op -> Val:Op rewrite[Let][Let] :: Val:Op -> Val:Op -> Val:Op -> Val:Op rewrite[Let][Let][Let] :: Val:Op -> Val:Op -> Val:Op -> Val:Op hole_Val:Op1_0 :: Val:Op hole_False:True2_0 :: False:True gen_Val:Op3_0 :: Nat -> Val:Op Generator Equations: gen_Val:Op3_0(0) <=> Val gen_Val:Op3_0(+(x, 1)) <=> Op(Val, gen_Val:Op3_0(x)) The following defined symbols remain to be analysed: rewrite ---------------------------------------- (11) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: rewrite(gen_Val:Op3_0(+(1, n5_0))) -> *4_0, rt in Omega(n5_0) Induction Base: rewrite(gen_Val:Op3_0(+(1, 0))) Induction Step: rewrite(gen_Val:Op3_0(+(1, +(n5_0, 1)))) ->_R^Omega(1) Op(rewrite(gen_Val:Op3_0(+(1, n5_0))), Val) ->_IH Op(*4_0, Val) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (12) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: rewrite(Op(Val, y)) -> Op(rewrite(y), Val) rewrite(Op(Op(x, y), y')) -> rewrite[Let](Op(Op(x, y), y'), Op(x, y), rewrite(x)) rewrite(Val) -> Val second(Op(x, y)) -> y isOp(Val) -> False isOp(Op(x, y)) -> True first(Val) -> Val first(Op(x, y)) -> x assrewrite(exp) -> rewrite(exp) rewrite[Let](exp, Op(x, y), a1) -> rewrite[Let][Let](exp, a1, rewrite(y)) rewrite[Let][Let](Op(x, y), a1, b1) -> rewrite[Let][Let][Let](a1, b1, rewrite(y)) rewrite[Let][Let][Let](a1, b1, c1) -> rewrite(Op(a1, Op(b1, rewrite(c1)))) Types: rewrite :: Val:Op -> Val:Op Op :: Val:Op -> Val:Op -> Val:Op Val :: Val:Op rewrite[Let] :: Val:Op -> Val:Op -> Val:Op -> Val:Op second :: Val:Op -> Val:Op isOp :: Val:Op -> False:True False :: False:True True :: False:True first :: Val:Op -> Val:Op assrewrite :: Val:Op -> Val:Op rewrite[Let][Let] :: Val:Op -> Val:Op -> Val:Op -> Val:Op rewrite[Let][Let][Let] :: Val:Op -> Val:Op -> Val:Op -> Val:Op hole_Val:Op1_0 :: Val:Op hole_False:True2_0 :: False:True gen_Val:Op3_0 :: Nat -> Val:Op Generator Equations: gen_Val:Op3_0(0) <=> Val gen_Val:Op3_0(+(x, 1)) <=> Op(Val, gen_Val:Op3_0(x)) The following defined symbols remain to be analysed: rewrite ---------------------------------------- (13) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (14) BOUNDS(n^1, INF)