/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 291 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 69 ms] (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 115 ms] (16) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: -(x, 0) -> x -(s(x), s(y)) -> -(x, y) min(x, 0) -> 0 min(0, y) -> 0 min(s(x), s(y)) -> s(min(x, y)) twice(0) -> 0 twice(s(x)) -> s(s(twice(x))) f(s(x), s(y)) -> f(-(y, min(x, y)), s(twice(min(x, y)))) f(s(x), s(y)) -> f(-(x, min(x, y)), s(twice(min(x, y)))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: -(x, 0') -> x -(s(x), s(y)) -> -(x, y) min(x, 0') -> 0' min(0', y) -> 0' min(s(x), s(y)) -> s(min(x, y)) twice(0') -> 0' twice(s(x)) -> s(s(twice(x))) f(s(x), s(y)) -> f(-(y, min(x, y)), s(twice(min(x, y)))) f(s(x), s(y)) -> f(-(x, min(x, y)), s(twice(min(x, y)))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: Innermost TRS: Rules: -(x, 0') -> x -(s(x), s(y)) -> -(x, y) min(x, 0') -> 0' min(0', y) -> 0' min(s(x), s(y)) -> s(min(x, y)) twice(0') -> 0' twice(s(x)) -> s(s(twice(x))) f(s(x), s(y)) -> f(-(y, min(x, y)), s(twice(min(x, y)))) f(s(x), s(y)) -> f(-(x, min(x, y)), s(twice(min(x, y)))) Types: - :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s min :: 0':s -> 0':s -> 0':s twice :: 0':s -> 0':s f :: 0':s -> 0':s -> f hole_0':s1_0 :: 0':s hole_f2_0 :: f gen_0':s3_0 :: Nat -> 0':s ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: -, min, twice, f They will be analysed ascendingly in the following order: - < f min < f twice < f ---------------------------------------- (6) Obligation: Innermost TRS: Rules: -(x, 0') -> x -(s(x), s(y)) -> -(x, y) min(x, 0') -> 0' min(0', y) -> 0' min(s(x), s(y)) -> s(min(x, y)) twice(0') -> 0' twice(s(x)) -> s(s(twice(x))) f(s(x), s(y)) -> f(-(y, min(x, y)), s(twice(min(x, y)))) f(s(x), s(y)) -> f(-(x, min(x, y)), s(twice(min(x, y)))) Types: - :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s min :: 0':s -> 0':s -> 0':s twice :: 0':s -> 0':s f :: 0':s -> 0':s -> f hole_0':s1_0 :: 0':s hole_f2_0 :: f gen_0':s3_0 :: Nat -> 0':s Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: -, min, twice, f They will be analysed ascendingly in the following order: - < f min < f twice < f ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: -(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> gen_0':s3_0(0), rt in Omega(1 + n5_0) Induction Base: -(gen_0':s3_0(0), gen_0':s3_0(0)) ->_R^Omega(1) gen_0':s3_0(0) Induction Step: -(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(n5_0, 1))) ->_R^Omega(1) -(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) ->_IH gen_0':s3_0(0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: -(x, 0') -> x -(s(x), s(y)) -> -(x, y) min(x, 0') -> 0' min(0', y) -> 0' min(s(x), s(y)) -> s(min(x, y)) twice(0') -> 0' twice(s(x)) -> s(s(twice(x))) f(s(x), s(y)) -> f(-(y, min(x, y)), s(twice(min(x, y)))) f(s(x), s(y)) -> f(-(x, min(x, y)), s(twice(min(x, y)))) Types: - :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s min :: 0':s -> 0':s -> 0':s twice :: 0':s -> 0':s f :: 0':s -> 0':s -> f hole_0':s1_0 :: 0':s hole_f2_0 :: f gen_0':s3_0 :: Nat -> 0':s Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: -, min, twice, f They will be analysed ascendingly in the following order: - < f min < f twice < f ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Innermost TRS: Rules: -(x, 0') -> x -(s(x), s(y)) -> -(x, y) min(x, 0') -> 0' min(0', y) -> 0' min(s(x), s(y)) -> s(min(x, y)) twice(0') -> 0' twice(s(x)) -> s(s(twice(x))) f(s(x), s(y)) -> f(-(y, min(x, y)), s(twice(min(x, y)))) f(s(x), s(y)) -> f(-(x, min(x, y)), s(twice(min(x, y)))) Types: - :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s min :: 0':s -> 0':s -> 0':s twice :: 0':s -> 0':s f :: 0':s -> 0':s -> f hole_0':s1_0 :: 0':s hole_f2_0 :: f gen_0':s3_0 :: Nat -> 0':s Lemmas: -(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> gen_0':s3_0(0), rt in Omega(1 + n5_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: min, twice, f They will be analysed ascendingly in the following order: min < f twice < f ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: min(gen_0':s3_0(n297_0), gen_0':s3_0(n297_0)) -> gen_0':s3_0(n297_0), rt in Omega(1 + n297_0) Induction Base: min(gen_0':s3_0(0), gen_0':s3_0(0)) ->_R^Omega(1) 0' Induction Step: min(gen_0':s3_0(+(n297_0, 1)), gen_0':s3_0(+(n297_0, 1))) ->_R^Omega(1) s(min(gen_0':s3_0(n297_0), gen_0':s3_0(n297_0))) ->_IH s(gen_0':s3_0(c298_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: Innermost TRS: Rules: -(x, 0') -> x -(s(x), s(y)) -> -(x, y) min(x, 0') -> 0' min(0', y) -> 0' min(s(x), s(y)) -> s(min(x, y)) twice(0') -> 0' twice(s(x)) -> s(s(twice(x))) f(s(x), s(y)) -> f(-(y, min(x, y)), s(twice(min(x, y)))) f(s(x), s(y)) -> f(-(x, min(x, y)), s(twice(min(x, y)))) Types: - :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s min :: 0':s -> 0':s -> 0':s twice :: 0':s -> 0':s f :: 0':s -> 0':s -> f hole_0':s1_0 :: 0':s hole_f2_0 :: f gen_0':s3_0 :: Nat -> 0':s Lemmas: -(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> gen_0':s3_0(0), rt in Omega(1 + n5_0) min(gen_0':s3_0(n297_0), gen_0':s3_0(n297_0)) -> gen_0':s3_0(n297_0), rt in Omega(1 + n297_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: twice, f They will be analysed ascendingly in the following order: twice < f ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: twice(gen_0':s3_0(n635_0)) -> gen_0':s3_0(*(2, n635_0)), rt in Omega(1 + n635_0) Induction Base: twice(gen_0':s3_0(0)) ->_R^Omega(1) 0' Induction Step: twice(gen_0':s3_0(+(n635_0, 1))) ->_R^Omega(1) s(s(twice(gen_0':s3_0(n635_0)))) ->_IH s(s(gen_0':s3_0(*(2, c636_0)))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (16) Obligation: Innermost TRS: Rules: -(x, 0') -> x -(s(x), s(y)) -> -(x, y) min(x, 0') -> 0' min(0', y) -> 0' min(s(x), s(y)) -> s(min(x, y)) twice(0') -> 0' twice(s(x)) -> s(s(twice(x))) f(s(x), s(y)) -> f(-(y, min(x, y)), s(twice(min(x, y)))) f(s(x), s(y)) -> f(-(x, min(x, y)), s(twice(min(x, y)))) Types: - :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s min :: 0':s -> 0':s -> 0':s twice :: 0':s -> 0':s f :: 0':s -> 0':s -> f hole_0':s1_0 :: 0':s hole_f2_0 :: f gen_0':s3_0 :: Nat -> 0':s Lemmas: -(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> gen_0':s3_0(0), rt in Omega(1 + n5_0) min(gen_0':s3_0(n297_0), gen_0':s3_0(n297_0)) -> gen_0':s3_0(n297_0), rt in Omega(1 + n297_0) twice(gen_0':s3_0(n635_0)) -> gen_0':s3_0(*(2, n635_0)), rt in Omega(1 + n635_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: f