/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (2) TRS for Loop Detection (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (4) BEST (5) proven lower bound (6) LowerBoundPropagationProof [FINISHED, 0 ms] (7) BOUNDS(n^1, INF) (8) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: cond_scanr_f_z_xs_1(Cons(0, x11), 0) -> Cons(0, Cons(0, x11)) cond_scanr_f_z_xs_1(Cons(S(x2), x11), 0) -> Cons(S(x2), Cons(S(x2), x11)) cond_scanr_f_z_xs_1(Cons(0, x11), M(x2)) -> Cons(0, Cons(0, x11)) cond_scanr_f_z_xs_1(Cons(S(x40), x23), M(0)) -> Cons(S(x40), Cons(S(x40), x23)) cond_scanr_f_z_xs_1(Cons(S(x8), x23), M(S(x4))) -> Cons(minus#2(x8, x4), Cons(S(x8), x23)) cond_scanr_f_z_xs_1(Cons(0, x11), S(x2)) -> Cons(S(x2), Cons(0, x11)) cond_scanr_f_z_xs_1(Cons(S(x2), x11), S(x4)) -> Cons(plus#2(S(x4), S(x2)), Cons(S(x2), x11)) scanr#3(Nil) -> Cons(0, Nil) scanr#3(Cons(x4, x2)) -> cond_scanr_f_z_xs_1(scanr#3(x2), x4) foldl#3(x2, Nil) -> x2 foldl#3(x6, Cons(x4, x2)) -> foldl#3(max#2(x6, x4), x2) minus#2(0, x16) -> 0 minus#2(S(x20), 0) -> S(x20) minus#2(S(x4), S(x2)) -> minus#2(x4, x2) plus#2(0, S(x2)) -> S(x2) plus#2(S(x4), S(x2)) -> S(plus#2(x4, S(x2))) max#2(0, x8) -> x8 max#2(S(x12), 0) -> S(x12) max#2(S(x4), S(x2)) -> S(max#2(x4, x2)) main(x1) -> foldl#3(0, scanr#3(x1)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (2) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: cond_scanr_f_z_xs_1(Cons(0, x11), 0) -> Cons(0, Cons(0, x11)) cond_scanr_f_z_xs_1(Cons(S(x2), x11), 0) -> Cons(S(x2), Cons(S(x2), x11)) cond_scanr_f_z_xs_1(Cons(0, x11), M(x2)) -> Cons(0, Cons(0, x11)) cond_scanr_f_z_xs_1(Cons(S(x40), x23), M(0)) -> Cons(S(x40), Cons(S(x40), x23)) cond_scanr_f_z_xs_1(Cons(S(x8), x23), M(S(x4))) -> Cons(minus#2(x8, x4), Cons(S(x8), x23)) cond_scanr_f_z_xs_1(Cons(0, x11), S(x2)) -> Cons(S(x2), Cons(0, x11)) cond_scanr_f_z_xs_1(Cons(S(x2), x11), S(x4)) -> Cons(plus#2(S(x4), S(x2)), Cons(S(x2), x11)) scanr#3(Nil) -> Cons(0, Nil) scanr#3(Cons(x4, x2)) -> cond_scanr_f_z_xs_1(scanr#3(x2), x4) foldl#3(x2, Nil) -> x2 foldl#3(x6, Cons(x4, x2)) -> foldl#3(max#2(x6, x4), x2) minus#2(0, x16) -> 0 minus#2(S(x20), 0) -> S(x20) minus#2(S(x4), S(x2)) -> minus#2(x4, x2) plus#2(0, S(x2)) -> S(x2) plus#2(S(x4), S(x2)) -> S(plus#2(x4, S(x2))) max#2(0, x8) -> x8 max#2(S(x12), 0) -> S(x12) max#2(S(x4), S(x2)) -> S(max#2(x4, x2)) main(x1) -> foldl#3(0, scanr#3(x1)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence minus#2(S(x4), S(x2)) ->^+ minus#2(x4, x2) gives rise to a decreasing loop by considering the right hand sides subterm at position []. The pumping substitution is [x4 / S(x4), x2 / S(x2)]. The result substitution is [ ]. ---------------------------------------- (4) Complex Obligation (BEST) ---------------------------------------- (5) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: cond_scanr_f_z_xs_1(Cons(0, x11), 0) -> Cons(0, Cons(0, x11)) cond_scanr_f_z_xs_1(Cons(S(x2), x11), 0) -> Cons(S(x2), Cons(S(x2), x11)) cond_scanr_f_z_xs_1(Cons(0, x11), M(x2)) -> Cons(0, Cons(0, x11)) cond_scanr_f_z_xs_1(Cons(S(x40), x23), M(0)) -> Cons(S(x40), Cons(S(x40), x23)) cond_scanr_f_z_xs_1(Cons(S(x8), x23), M(S(x4))) -> Cons(minus#2(x8, x4), Cons(S(x8), x23)) cond_scanr_f_z_xs_1(Cons(0, x11), S(x2)) -> Cons(S(x2), Cons(0, x11)) cond_scanr_f_z_xs_1(Cons(S(x2), x11), S(x4)) -> Cons(plus#2(S(x4), S(x2)), Cons(S(x2), x11)) scanr#3(Nil) -> Cons(0, Nil) scanr#3(Cons(x4, x2)) -> cond_scanr_f_z_xs_1(scanr#3(x2), x4) foldl#3(x2, Nil) -> x2 foldl#3(x6, Cons(x4, x2)) -> foldl#3(max#2(x6, x4), x2) minus#2(0, x16) -> 0 minus#2(S(x20), 0) -> S(x20) minus#2(S(x4), S(x2)) -> minus#2(x4, x2) plus#2(0, S(x2)) -> S(x2) plus#2(S(x4), S(x2)) -> S(plus#2(x4, S(x2))) max#2(0, x8) -> x8 max#2(S(x12), 0) -> S(x12) max#2(S(x4), S(x2)) -> S(max#2(x4, x2)) main(x1) -> foldl#3(0, scanr#3(x1)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (6) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (7) BOUNDS(n^1, INF) ---------------------------------------- (8) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: cond_scanr_f_z_xs_1(Cons(0, x11), 0) -> Cons(0, Cons(0, x11)) cond_scanr_f_z_xs_1(Cons(S(x2), x11), 0) -> Cons(S(x2), Cons(S(x2), x11)) cond_scanr_f_z_xs_1(Cons(0, x11), M(x2)) -> Cons(0, Cons(0, x11)) cond_scanr_f_z_xs_1(Cons(S(x40), x23), M(0)) -> Cons(S(x40), Cons(S(x40), x23)) cond_scanr_f_z_xs_1(Cons(S(x8), x23), M(S(x4))) -> Cons(minus#2(x8, x4), Cons(S(x8), x23)) cond_scanr_f_z_xs_1(Cons(0, x11), S(x2)) -> Cons(S(x2), Cons(0, x11)) cond_scanr_f_z_xs_1(Cons(S(x2), x11), S(x4)) -> Cons(plus#2(S(x4), S(x2)), Cons(S(x2), x11)) scanr#3(Nil) -> Cons(0, Nil) scanr#3(Cons(x4, x2)) -> cond_scanr_f_z_xs_1(scanr#3(x2), x4) foldl#3(x2, Nil) -> x2 foldl#3(x6, Cons(x4, x2)) -> foldl#3(max#2(x6, x4), x2) minus#2(0, x16) -> 0 minus#2(S(x20), 0) -> S(x20) minus#2(S(x4), S(x2)) -> minus#2(x4, x2) plus#2(0, S(x2)) -> S(x2) plus#2(S(x4), S(x2)) -> S(plus#2(x4, S(x2))) max#2(0, x8) -> x8 max#2(S(x12), 0) -> S(x12) max#2(S(x4), S(x2)) -> S(max#2(x4, x2)) main(x1) -> foldl#3(0, scanr#3(x1)) S is empty. Rewrite Strategy: INNERMOST