/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 1069 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 45 ms] (14) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: fib(0) -> 0 fib(s(0)) -> s(0) fib(s(s(0))) -> s(0) fib(s(s(x))) -> sp(g(x)) g(0) -> pair(s(0), 0) g(s(0)) -> pair(s(0), s(0)) g(s(x)) -> np(g(x)) sp(pair(x, y)) -> +(x, y) np(pair(x, y)) -> pair(+(x, y), x) +(x, 0) -> x +(x, s(y)) -> s(+(x, y)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: fib(0') -> 0' fib(s(0')) -> s(0') fib(s(s(0'))) -> s(0') fib(s(s(x))) -> sp(g(x)) g(0') -> pair(s(0'), 0') g(s(0')) -> pair(s(0'), s(0')) g(s(x)) -> np(g(x)) sp(pair(x, y)) -> +'(x, y) np(pair(x, y)) -> pair(+'(x, y), x) +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: Innermost TRS: Rules: fib(0') -> 0' fib(s(0')) -> s(0') fib(s(s(0'))) -> s(0') fib(s(s(x))) -> sp(g(x)) g(0') -> pair(s(0'), 0') g(s(0')) -> pair(s(0'), s(0')) g(s(x)) -> np(g(x)) sp(pair(x, y)) -> +'(x, y) np(pair(x, y)) -> pair(+'(x, y), x) +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) Types: fib :: 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s sp :: pair -> 0':s g :: 0':s -> pair pair :: 0':s -> 0':s -> pair np :: pair -> pair +' :: 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s hole_pair2_0 :: pair gen_0':s3_0 :: Nat -> 0':s ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: g, +' ---------------------------------------- (6) Obligation: Innermost TRS: Rules: fib(0') -> 0' fib(s(0')) -> s(0') fib(s(s(0'))) -> s(0') fib(s(s(x))) -> sp(g(x)) g(0') -> pair(s(0'), 0') g(s(0')) -> pair(s(0'), s(0')) g(s(x)) -> np(g(x)) sp(pair(x, y)) -> +'(x, y) np(pair(x, y)) -> pair(+'(x, y), x) +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) Types: fib :: 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s sp :: pair -> 0':s g :: 0':s -> pair pair :: 0':s -> 0':s -> pair np :: pair -> pair +' :: 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s hole_pair2_0 :: pair gen_0':s3_0 :: Nat -> 0':s Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: g, +' ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: g(gen_0':s3_0(+(1, n5_0))) -> *4_0, rt in Omega(n5_0) Induction Base: g(gen_0':s3_0(+(1, 0))) Induction Step: g(gen_0':s3_0(+(1, +(n5_0, 1)))) ->_R^Omega(1) np(g(gen_0':s3_0(+(1, n5_0)))) ->_IH np(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: fib(0') -> 0' fib(s(0')) -> s(0') fib(s(s(0'))) -> s(0') fib(s(s(x))) -> sp(g(x)) g(0') -> pair(s(0'), 0') g(s(0')) -> pair(s(0'), s(0')) g(s(x)) -> np(g(x)) sp(pair(x, y)) -> +'(x, y) np(pair(x, y)) -> pair(+'(x, y), x) +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) Types: fib :: 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s sp :: pair -> 0':s g :: 0':s -> pair pair :: 0':s -> 0':s -> pair np :: pair -> pair +' :: 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s hole_pair2_0 :: pair gen_0':s3_0 :: Nat -> 0':s Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: g, +' ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Innermost TRS: Rules: fib(0') -> 0' fib(s(0')) -> s(0') fib(s(s(0'))) -> s(0') fib(s(s(x))) -> sp(g(x)) g(0') -> pair(s(0'), 0') g(s(0')) -> pair(s(0'), s(0')) g(s(x)) -> np(g(x)) sp(pair(x, y)) -> +'(x, y) np(pair(x, y)) -> pair(+'(x, y), x) +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) Types: fib :: 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s sp :: pair -> 0':s g :: 0':s -> pair pair :: 0':s -> 0':s -> pair np :: pair -> pair +' :: 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s hole_pair2_0 :: pair gen_0':s3_0 :: Nat -> 0':s Lemmas: g(gen_0':s3_0(+(1, n5_0))) -> *4_0, rt in Omega(n5_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: +' ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: +'(gen_0':s3_0(a), gen_0':s3_0(n4883_0)) -> gen_0':s3_0(+(n4883_0, a)), rt in Omega(1 + n4883_0) Induction Base: +'(gen_0':s3_0(a), gen_0':s3_0(0)) ->_R^Omega(1) gen_0':s3_0(a) Induction Step: +'(gen_0':s3_0(a), gen_0':s3_0(+(n4883_0, 1))) ->_R^Omega(1) s(+'(gen_0':s3_0(a), gen_0':s3_0(n4883_0))) ->_IH s(gen_0':s3_0(+(a, c4884_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) BOUNDS(1, INF)