/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (2) CdtProblem (3) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (4) CdtProblem (5) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CdtProblem (9) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 54 ms] (10) CdtProblem (11) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (12) BOUNDS(1, 1) (13) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (14) TRS for Loop Detection (15) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (16) BEST (17) proven lower bound (18) LowerBoundPropagationProof [FINISHED, 0 ms] (19) BOUNDS(n^1, INF) (20) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: foldl(x, Cons(S(0), xs)) -> foldl(S(x), xs) foldl(S(0), Cons(x, xs)) -> foldl(S(x), xs) foldr(a, Cons(x, xs)) -> op(x, foldr(a, xs)) foldr(a, Nil) -> a foldl(a, Nil) -> a notEmpty(Cons(x, xs)) -> True notEmpty(Nil) -> False op(x, S(0)) -> S(x) op(S(0), y) -> S(y) fold(a, xs) -> Cons(foldl(a, xs), Cons(foldr(a, xs), Nil)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (2) Obligation: Complexity Dependency Tuples Problem Rules: foldl(z0, Cons(S(0), z1)) -> foldl(S(z0), z1) foldl(S(0), Cons(z0, z1)) -> foldl(S(z0), z1) foldl(z0, Nil) -> z0 foldr(z0, Cons(z1, z2)) -> op(z1, foldr(z0, z2)) foldr(z0, Nil) -> z0 notEmpty(Cons(z0, z1)) -> True notEmpty(Nil) -> False op(z0, S(0)) -> S(z0) op(S(0), z0) -> S(z0) fold(z0, z1) -> Cons(foldl(z0, z1), Cons(foldr(z0, z1), Nil)) Tuples: FOLDL(z0, Cons(S(0), z1)) -> c(FOLDL(S(z0), z1)) FOLDL(S(0), Cons(z0, z1)) -> c1(FOLDL(S(z0), z1)) FOLDL(z0, Nil) -> c2 FOLDR(z0, Cons(z1, z2)) -> c3(OP(z1, foldr(z0, z2)), FOLDR(z0, z2)) FOLDR(z0, Nil) -> c4 NOTEMPTY(Cons(z0, z1)) -> c5 NOTEMPTY(Nil) -> c6 OP(z0, S(0)) -> c7 OP(S(0), z0) -> c8 FOLD(z0, z1) -> c9(FOLDL(z0, z1), FOLDR(z0, z1)) S tuples: FOLDL(z0, Cons(S(0), z1)) -> c(FOLDL(S(z0), z1)) FOLDL(S(0), Cons(z0, z1)) -> c1(FOLDL(S(z0), z1)) FOLDL(z0, Nil) -> c2 FOLDR(z0, Cons(z1, z2)) -> c3(OP(z1, foldr(z0, z2)), FOLDR(z0, z2)) FOLDR(z0, Nil) -> c4 NOTEMPTY(Cons(z0, z1)) -> c5 NOTEMPTY(Nil) -> c6 OP(z0, S(0)) -> c7 OP(S(0), z0) -> c8 FOLD(z0, z1) -> c9(FOLDL(z0, z1), FOLDR(z0, z1)) K tuples:none Defined Rule Symbols: foldl_2, foldr_2, notEmpty_1, op_2, fold_2 Defined Pair Symbols: FOLDL_2, FOLDR_2, NOTEMPTY_1, OP_2, FOLD_2 Compound Symbols: c_1, c1_1, c2, c3_2, c4, c5, c6, c7, c8, c9_2 ---------------------------------------- (3) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 1 leading nodes: FOLD(z0, z1) -> c9(FOLDL(z0, z1), FOLDR(z0, z1)) Removed 6 trailing nodes: NOTEMPTY(Cons(z0, z1)) -> c5 FOLDR(z0, Nil) -> c4 OP(S(0), z0) -> c8 OP(z0, S(0)) -> c7 NOTEMPTY(Nil) -> c6 FOLDL(z0, Nil) -> c2 ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: foldl(z0, Cons(S(0), z1)) -> foldl(S(z0), z1) foldl(S(0), Cons(z0, z1)) -> foldl(S(z0), z1) foldl(z0, Nil) -> z0 foldr(z0, Cons(z1, z2)) -> op(z1, foldr(z0, z2)) foldr(z0, Nil) -> z0 notEmpty(Cons(z0, z1)) -> True notEmpty(Nil) -> False op(z0, S(0)) -> S(z0) op(S(0), z0) -> S(z0) fold(z0, z1) -> Cons(foldl(z0, z1), Cons(foldr(z0, z1), Nil)) Tuples: FOLDL(z0, Cons(S(0), z1)) -> c(FOLDL(S(z0), z1)) FOLDL(S(0), Cons(z0, z1)) -> c1(FOLDL(S(z0), z1)) FOLDR(z0, Cons(z1, z2)) -> c3(OP(z1, foldr(z0, z2)), FOLDR(z0, z2)) S tuples: FOLDL(z0, Cons(S(0), z1)) -> c(FOLDL(S(z0), z1)) FOLDL(S(0), Cons(z0, z1)) -> c1(FOLDL(S(z0), z1)) FOLDR(z0, Cons(z1, z2)) -> c3(OP(z1, foldr(z0, z2)), FOLDR(z0, z2)) K tuples:none Defined Rule Symbols: foldl_2, foldr_2, notEmpty_1, op_2, fold_2 Defined Pair Symbols: FOLDL_2, FOLDR_2 Compound Symbols: c_1, c1_1, c3_2 ---------------------------------------- (5) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing tuple parts ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: foldl(z0, Cons(S(0), z1)) -> foldl(S(z0), z1) foldl(S(0), Cons(z0, z1)) -> foldl(S(z0), z1) foldl(z0, Nil) -> z0 foldr(z0, Cons(z1, z2)) -> op(z1, foldr(z0, z2)) foldr(z0, Nil) -> z0 notEmpty(Cons(z0, z1)) -> True notEmpty(Nil) -> False op(z0, S(0)) -> S(z0) op(S(0), z0) -> S(z0) fold(z0, z1) -> Cons(foldl(z0, z1), Cons(foldr(z0, z1), Nil)) Tuples: FOLDL(z0, Cons(S(0), z1)) -> c(FOLDL(S(z0), z1)) FOLDL(S(0), Cons(z0, z1)) -> c1(FOLDL(S(z0), z1)) FOLDR(z0, Cons(z1, z2)) -> c3(FOLDR(z0, z2)) S tuples: FOLDL(z0, Cons(S(0), z1)) -> c(FOLDL(S(z0), z1)) FOLDL(S(0), Cons(z0, z1)) -> c1(FOLDL(S(z0), z1)) FOLDR(z0, Cons(z1, z2)) -> c3(FOLDR(z0, z2)) K tuples:none Defined Rule Symbols: foldl_2, foldr_2, notEmpty_1, op_2, fold_2 Defined Pair Symbols: FOLDL_2, FOLDR_2 Compound Symbols: c_1, c1_1, c3_1 ---------------------------------------- (7) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: foldl(z0, Cons(S(0), z1)) -> foldl(S(z0), z1) foldl(S(0), Cons(z0, z1)) -> foldl(S(z0), z1) foldl(z0, Nil) -> z0 foldr(z0, Cons(z1, z2)) -> op(z1, foldr(z0, z2)) foldr(z0, Nil) -> z0 notEmpty(Cons(z0, z1)) -> True notEmpty(Nil) -> False op(z0, S(0)) -> S(z0) op(S(0), z0) -> S(z0) fold(z0, z1) -> Cons(foldl(z0, z1), Cons(foldr(z0, z1), Nil)) ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: FOLDL(z0, Cons(S(0), z1)) -> c(FOLDL(S(z0), z1)) FOLDL(S(0), Cons(z0, z1)) -> c1(FOLDL(S(z0), z1)) FOLDR(z0, Cons(z1, z2)) -> c3(FOLDR(z0, z2)) S tuples: FOLDL(z0, Cons(S(0), z1)) -> c(FOLDL(S(z0), z1)) FOLDL(S(0), Cons(z0, z1)) -> c1(FOLDL(S(z0), z1)) FOLDR(z0, Cons(z1, z2)) -> c3(FOLDR(z0, z2)) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: FOLDL_2, FOLDR_2 Compound Symbols: c_1, c1_1, c3_1 ---------------------------------------- (9) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. FOLDL(z0, Cons(S(0), z1)) -> c(FOLDL(S(z0), z1)) FOLDL(S(0), Cons(z0, z1)) -> c1(FOLDL(S(z0), z1)) FOLDR(z0, Cons(z1, z2)) -> c3(FOLDR(z0, z2)) We considered the (Usable) Rules:none And the Tuples: FOLDL(z0, Cons(S(0), z1)) -> c(FOLDL(S(z0), z1)) FOLDL(S(0), Cons(z0, z1)) -> c1(FOLDL(S(z0), z1)) FOLDR(z0, Cons(z1, z2)) -> c3(FOLDR(z0, z2)) The order we found is given by the following interpretation: Polynomial interpretation : POL(0) = 0 POL(Cons(x_1, x_2)) = [1] + x_1 + x_2 POL(FOLDL(x_1, x_2)) = x_2 POL(FOLDR(x_1, x_2)) = [3]x_2 POL(S(x_1)) = [1] + x_1 POL(c(x_1)) = x_1 POL(c1(x_1)) = x_1 POL(c3(x_1)) = x_1 ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: FOLDL(z0, Cons(S(0), z1)) -> c(FOLDL(S(z0), z1)) FOLDL(S(0), Cons(z0, z1)) -> c1(FOLDL(S(z0), z1)) FOLDR(z0, Cons(z1, z2)) -> c3(FOLDR(z0, z2)) S tuples:none K tuples: FOLDL(z0, Cons(S(0), z1)) -> c(FOLDL(S(z0), z1)) FOLDL(S(0), Cons(z0, z1)) -> c1(FOLDL(S(z0), z1)) FOLDR(z0, Cons(z1, z2)) -> c3(FOLDR(z0, z2)) Defined Rule Symbols:none Defined Pair Symbols: FOLDL_2, FOLDR_2 Compound Symbols: c_1, c1_1, c3_1 ---------------------------------------- (11) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (12) BOUNDS(1, 1) ---------------------------------------- (13) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (14) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: foldl(x, Cons(S(0), xs)) -> foldl(S(x), xs) foldl(S(0), Cons(x, xs)) -> foldl(S(x), xs) foldr(a, Cons(x, xs)) -> op(x, foldr(a, xs)) foldr(a, Nil) -> a foldl(a, Nil) -> a notEmpty(Cons(x, xs)) -> True notEmpty(Nil) -> False op(x, S(0)) -> S(x) op(S(0), y) -> S(y) fold(a, xs) -> Cons(foldl(a, xs), Cons(foldr(a, xs), Nil)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (15) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence foldl(x, Cons(S(0), xs)) ->^+ foldl(S(x), xs) gives rise to a decreasing loop by considering the right hand sides subterm at position []. The pumping substitution is [xs / Cons(S(0), xs)]. The result substitution is [x / S(x)]. ---------------------------------------- (16) Complex Obligation (BEST) ---------------------------------------- (17) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: foldl(x, Cons(S(0), xs)) -> foldl(S(x), xs) foldl(S(0), Cons(x, xs)) -> foldl(S(x), xs) foldr(a, Cons(x, xs)) -> op(x, foldr(a, xs)) foldr(a, Nil) -> a foldl(a, Nil) -> a notEmpty(Cons(x, xs)) -> True notEmpty(Nil) -> False op(x, S(0)) -> S(x) op(S(0), y) -> S(y) fold(a, xs) -> Cons(foldl(a, xs), Cons(foldr(a, xs), Nil)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (18) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (19) BOUNDS(n^1, INF) ---------------------------------------- (20) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: foldl(x, Cons(S(0), xs)) -> foldl(S(x), xs) foldl(S(0), Cons(x, xs)) -> foldl(S(x), xs) foldr(a, Cons(x, xs)) -> op(x, foldr(a, xs)) foldr(a, Nil) -> a foldl(a, Nil) -> a notEmpty(Cons(x, xs)) -> True notEmpty(Nil) -> False op(x, S(0)) -> S(x) op(S(0), y) -> S(y) fold(a, xs) -> Cons(foldl(a, xs), Cons(foldr(a, xs), Nil)) S is empty. Rewrite Strategy: INNERMOST