/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (2) CdtProblem (3) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CdtProblem (5) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 33 ms] (8) CdtProblem (9) CdtKnowledgeProof [FINISHED, 0 ms] (10) BOUNDS(1, 1) (11) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (12) TRS for Loop Detection (13) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (14) BEST (15) proven lower bound (16) LowerBoundPropagationProof [FINISHED, 0 ms] (17) BOUNDS(n^1, INF) (18) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(empty, l) -> l f(cons(x, k), l) -> g(k, l, cons(x, k)) g(a, b, c) -> f(a, cons(b, c)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (2) Obligation: Complexity Dependency Tuples Problem Rules: f(empty, z0) -> z0 f(cons(z0, z1), z2) -> g(z1, z2, cons(z0, z1)) g(z0, z1, z2) -> f(z0, cons(z1, z2)) Tuples: F(empty, z0) -> c F(cons(z0, z1), z2) -> c1(G(z1, z2, cons(z0, z1))) G(z0, z1, z2) -> c2(F(z0, cons(z1, z2))) S tuples: F(empty, z0) -> c F(cons(z0, z1), z2) -> c1(G(z1, z2, cons(z0, z1))) G(z0, z1, z2) -> c2(F(z0, cons(z1, z2))) K tuples:none Defined Rule Symbols: f_2, g_3 Defined Pair Symbols: F_2, G_3 Compound Symbols: c, c1_1, c2_1 ---------------------------------------- (3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing nodes: F(empty, z0) -> c ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: f(empty, z0) -> z0 f(cons(z0, z1), z2) -> g(z1, z2, cons(z0, z1)) g(z0, z1, z2) -> f(z0, cons(z1, z2)) Tuples: F(cons(z0, z1), z2) -> c1(G(z1, z2, cons(z0, z1))) G(z0, z1, z2) -> c2(F(z0, cons(z1, z2))) S tuples: F(cons(z0, z1), z2) -> c1(G(z1, z2, cons(z0, z1))) G(z0, z1, z2) -> c2(F(z0, cons(z1, z2))) K tuples:none Defined Rule Symbols: f_2, g_3 Defined Pair Symbols: F_2, G_3 Compound Symbols: c1_1, c2_1 ---------------------------------------- (5) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: f(empty, z0) -> z0 f(cons(z0, z1), z2) -> g(z1, z2, cons(z0, z1)) g(z0, z1, z2) -> f(z0, cons(z1, z2)) ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: F(cons(z0, z1), z2) -> c1(G(z1, z2, cons(z0, z1))) G(z0, z1, z2) -> c2(F(z0, cons(z1, z2))) S tuples: F(cons(z0, z1), z2) -> c1(G(z1, z2, cons(z0, z1))) G(z0, z1, z2) -> c2(F(z0, cons(z1, z2))) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: F_2, G_3 Compound Symbols: c1_1, c2_1 ---------------------------------------- (7) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. F(cons(z0, z1), z2) -> c1(G(z1, z2, cons(z0, z1))) We considered the (Usable) Rules:none And the Tuples: F(cons(z0, z1), z2) -> c1(G(z1, z2, cons(z0, z1))) G(z0, z1, z2) -> c2(F(z0, cons(z1, z2))) The order we found is given by the following interpretation: Polynomial interpretation : POL(F(x_1, x_2)) = [1] + x_1 POL(G(x_1, x_2, x_3)) = [1] + x_1 POL(c1(x_1)) = x_1 POL(c2(x_1)) = x_1 POL(cons(x_1, x_2)) = [1] + x_1 + x_2 ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: F(cons(z0, z1), z2) -> c1(G(z1, z2, cons(z0, z1))) G(z0, z1, z2) -> c2(F(z0, cons(z1, z2))) S tuples: G(z0, z1, z2) -> c2(F(z0, cons(z1, z2))) K tuples: F(cons(z0, z1), z2) -> c1(G(z1, z2, cons(z0, z1))) Defined Rule Symbols:none Defined Pair Symbols: F_2, G_3 Compound Symbols: c1_1, c2_1 ---------------------------------------- (9) CdtKnowledgeProof (FINISHED) The following tuples could be moved from S to K by knowledge propagation: G(z0, z1, z2) -> c2(F(z0, cons(z1, z2))) F(cons(z0, z1), z2) -> c1(G(z1, z2, cons(z0, z1))) Now S is empty ---------------------------------------- (10) BOUNDS(1, 1) ---------------------------------------- (11) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (12) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(empty, l) -> l f(cons(x, k), l) -> g(k, l, cons(x, k)) g(a, b, c) -> f(a, cons(b, c)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (13) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence g(cons(x1_0, k2_0), b, c) ->^+ g(k2_0, cons(b, c), cons(x1_0, k2_0)) gives rise to a decreasing loop by considering the right hand sides subterm at position []. The pumping substitution is [k2_0 / cons(x1_0, k2_0)]. The result substitution is [b / cons(b, c), c / cons(x1_0, k2_0)]. ---------------------------------------- (14) Complex Obligation (BEST) ---------------------------------------- (15) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(empty, l) -> l f(cons(x, k), l) -> g(k, l, cons(x, k)) g(a, b, c) -> f(a, cons(b, c)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (16) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (17) BOUNDS(n^1, INF) ---------------------------------------- (18) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(empty, l) -> l f(cons(x, k), l) -> g(k, l, cons(x, k)) g(a, b, c) -> f(a, cons(b, c)) S is empty. Rewrite Strategy: INNERMOST