/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 564 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 295 ms] (14) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: double(x) -> permute(x, x, a) permute(x, y, a) -> permute(isZero(x), x, b) permute(false, x, b) -> permute(ack(x, x), p(x), c) permute(true, x, b) -> 0 permute(y, x, c) -> s(s(permute(x, y, a))) p(0) -> 0 p(s(x)) -> x ack(0, x) -> plus(x, s(0)) ack(s(x), 0) -> ack(x, s(0)) ack(s(x), s(y)) -> ack(x, ack(s(x), y)) plus(0, y) -> y plus(s(x), y) -> plus(x, s(y)) plus(x, s(s(y))) -> s(plus(s(x), y)) plus(x, s(0)) -> s(x) plus(x, 0) -> x isZero(0) -> true isZero(s(x)) -> false S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: double(x) -> permute(x, x, a) permute(x, y, a) -> permute(isZero(x), x, b) permute(false, x, b) -> permute(ack(x, x), p(x), c) permute(true, x, b) -> 0' permute(y, x, c) -> s(s(permute(x, y, a))) p(0') -> 0' p(s(x)) -> x ack(0', x) -> plus(x, s(0')) ack(s(x), 0') -> ack(x, s(0')) ack(s(x), s(y)) -> ack(x, ack(s(x), y)) plus(0', y) -> y plus(s(x), y) -> plus(x, s(y)) plus(x, s(s(y))) -> s(plus(s(x), y)) plus(x, s(0')) -> s(x) plus(x, 0') -> x isZero(0') -> true isZero(s(x)) -> false S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: Innermost TRS: Rules: double(x) -> permute(x, x, a) permute(x, y, a) -> permute(isZero(x), x, b) permute(false, x, b) -> permute(ack(x, x), p(x), c) permute(true, x, b) -> 0' permute(y, x, c) -> s(s(permute(x, y, a))) p(0') -> 0' p(s(x)) -> x ack(0', x) -> plus(x, s(0')) ack(s(x), 0') -> ack(x, s(0')) ack(s(x), s(y)) -> ack(x, ack(s(x), y)) plus(0', y) -> y plus(s(x), y) -> plus(x, s(y)) plus(x, s(s(y))) -> s(plus(s(x), y)) plus(x, s(0')) -> s(x) plus(x, 0') -> x isZero(0') -> true isZero(s(x)) -> false Types: double :: false:true:0':s -> false:true:0':s permute :: false:true:0':s -> false:true:0':s -> a:b:c -> false:true:0':s a :: a:b:c isZero :: false:true:0':s -> false:true:0':s b :: a:b:c false :: false:true:0':s ack :: false:true:0':s -> false:true:0':s -> false:true:0':s p :: false:true:0':s -> false:true:0':s c :: a:b:c true :: false:true:0':s 0' :: false:true:0':s s :: false:true:0':s -> false:true:0':s plus :: false:true:0':s -> false:true:0':s -> false:true:0':s hole_false:true:0':s1_0 :: false:true:0':s hole_a:b:c2_0 :: a:b:c gen_false:true:0':s3_0 :: Nat -> false:true:0':s ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: permute, ack, plus They will be analysed ascendingly in the following order: ack < permute plus < ack ---------------------------------------- (6) Obligation: Innermost TRS: Rules: double(x) -> permute(x, x, a) permute(x, y, a) -> permute(isZero(x), x, b) permute(false, x, b) -> permute(ack(x, x), p(x), c) permute(true, x, b) -> 0' permute(y, x, c) -> s(s(permute(x, y, a))) p(0') -> 0' p(s(x)) -> x ack(0', x) -> plus(x, s(0')) ack(s(x), 0') -> ack(x, s(0')) ack(s(x), s(y)) -> ack(x, ack(s(x), y)) plus(0', y) -> y plus(s(x), y) -> plus(x, s(y)) plus(x, s(s(y))) -> s(plus(s(x), y)) plus(x, s(0')) -> s(x) plus(x, 0') -> x isZero(0') -> true isZero(s(x)) -> false Types: double :: false:true:0':s -> false:true:0':s permute :: false:true:0':s -> false:true:0':s -> a:b:c -> false:true:0':s a :: a:b:c isZero :: false:true:0':s -> false:true:0':s b :: a:b:c false :: false:true:0':s ack :: false:true:0':s -> false:true:0':s -> false:true:0':s p :: false:true:0':s -> false:true:0':s c :: a:b:c true :: false:true:0':s 0' :: false:true:0':s s :: false:true:0':s -> false:true:0':s plus :: false:true:0':s -> false:true:0':s -> false:true:0':s hole_false:true:0':s1_0 :: false:true:0':s hole_a:b:c2_0 :: a:b:c gen_false:true:0':s3_0 :: Nat -> false:true:0':s Generator Equations: gen_false:true:0':s3_0(0) <=> true gen_false:true:0':s3_0(+(x, 1)) <=> s(gen_false:true:0':s3_0(x)) The following defined symbols remain to be analysed: plus, permute, ack They will be analysed ascendingly in the following order: ack < permute plus < ack ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: plus(gen_false:true:0':s3_0(a), gen_false:true:0':s3_0(+(2, *(2, n5_0)))) -> *4_0, rt in Omega(n5_0) Induction Base: plus(gen_false:true:0':s3_0(a), gen_false:true:0':s3_0(+(2, *(2, 0)))) Induction Step: plus(gen_false:true:0':s3_0(a), gen_false:true:0':s3_0(+(2, *(2, +(n5_0, 1))))) ->_R^Omega(1) s(plus(s(gen_false:true:0':s3_0(a)), gen_false:true:0':s3_0(+(2, *(2, n5_0))))) ->_IH s(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: double(x) -> permute(x, x, a) permute(x, y, a) -> permute(isZero(x), x, b) permute(false, x, b) -> permute(ack(x, x), p(x), c) permute(true, x, b) -> 0' permute(y, x, c) -> s(s(permute(x, y, a))) p(0') -> 0' p(s(x)) -> x ack(0', x) -> plus(x, s(0')) ack(s(x), 0') -> ack(x, s(0')) ack(s(x), s(y)) -> ack(x, ack(s(x), y)) plus(0', y) -> y plus(s(x), y) -> plus(x, s(y)) plus(x, s(s(y))) -> s(plus(s(x), y)) plus(x, s(0')) -> s(x) plus(x, 0') -> x isZero(0') -> true isZero(s(x)) -> false Types: double :: false:true:0':s -> false:true:0':s permute :: false:true:0':s -> false:true:0':s -> a:b:c -> false:true:0':s a :: a:b:c isZero :: false:true:0':s -> false:true:0':s b :: a:b:c false :: false:true:0':s ack :: false:true:0':s -> false:true:0':s -> false:true:0':s p :: false:true:0':s -> false:true:0':s c :: a:b:c true :: false:true:0':s 0' :: false:true:0':s s :: false:true:0':s -> false:true:0':s plus :: false:true:0':s -> false:true:0':s -> false:true:0':s hole_false:true:0':s1_0 :: false:true:0':s hole_a:b:c2_0 :: a:b:c gen_false:true:0':s3_0 :: Nat -> false:true:0':s Generator Equations: gen_false:true:0':s3_0(0) <=> true gen_false:true:0':s3_0(+(x, 1)) <=> s(gen_false:true:0':s3_0(x)) The following defined symbols remain to be analysed: plus, permute, ack They will be analysed ascendingly in the following order: ack < permute plus < ack ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Innermost TRS: Rules: double(x) -> permute(x, x, a) permute(x, y, a) -> permute(isZero(x), x, b) permute(false, x, b) -> permute(ack(x, x), p(x), c) permute(true, x, b) -> 0' permute(y, x, c) -> s(s(permute(x, y, a))) p(0') -> 0' p(s(x)) -> x ack(0', x) -> plus(x, s(0')) ack(s(x), 0') -> ack(x, s(0')) ack(s(x), s(y)) -> ack(x, ack(s(x), y)) plus(0', y) -> y plus(s(x), y) -> plus(x, s(y)) plus(x, s(s(y))) -> s(plus(s(x), y)) plus(x, s(0')) -> s(x) plus(x, 0') -> x isZero(0') -> true isZero(s(x)) -> false Types: double :: false:true:0':s -> false:true:0':s permute :: false:true:0':s -> false:true:0':s -> a:b:c -> false:true:0':s a :: a:b:c isZero :: false:true:0':s -> false:true:0':s b :: a:b:c false :: false:true:0':s ack :: false:true:0':s -> false:true:0':s -> false:true:0':s p :: false:true:0':s -> false:true:0':s c :: a:b:c true :: false:true:0':s 0' :: false:true:0':s s :: false:true:0':s -> false:true:0':s plus :: false:true:0':s -> false:true:0':s -> false:true:0':s hole_false:true:0':s1_0 :: false:true:0':s hole_a:b:c2_0 :: a:b:c gen_false:true:0':s3_0 :: Nat -> false:true:0':s Lemmas: plus(gen_false:true:0':s3_0(a), gen_false:true:0':s3_0(+(2, *(2, n5_0)))) -> *4_0, rt in Omega(n5_0) Generator Equations: gen_false:true:0':s3_0(0) <=> true gen_false:true:0':s3_0(+(x, 1)) <=> s(gen_false:true:0':s3_0(x)) The following defined symbols remain to be analysed: ack, permute They will be analysed ascendingly in the following order: ack < permute ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: ack(gen_false:true:0':s3_0(1), gen_false:true:0':s3_0(+(1, n2887_0))) -> *4_0, rt in Omega(n2887_0) Induction Base: ack(gen_false:true:0':s3_0(1), gen_false:true:0':s3_0(+(1, 0))) Induction Step: ack(gen_false:true:0':s3_0(1), gen_false:true:0':s3_0(+(1, +(n2887_0, 1)))) ->_R^Omega(1) ack(gen_false:true:0':s3_0(0), ack(s(gen_false:true:0':s3_0(0)), gen_false:true:0':s3_0(+(1, n2887_0)))) ->_IH ack(gen_false:true:0':s3_0(0), *4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: Innermost TRS: Rules: double(x) -> permute(x, x, a) permute(x, y, a) -> permute(isZero(x), x, b) permute(false, x, b) -> permute(ack(x, x), p(x), c) permute(true, x, b) -> 0' permute(y, x, c) -> s(s(permute(x, y, a))) p(0') -> 0' p(s(x)) -> x ack(0', x) -> plus(x, s(0')) ack(s(x), 0') -> ack(x, s(0')) ack(s(x), s(y)) -> ack(x, ack(s(x), y)) plus(0', y) -> y plus(s(x), y) -> plus(x, s(y)) plus(x, s(s(y))) -> s(plus(s(x), y)) plus(x, s(0')) -> s(x) plus(x, 0') -> x isZero(0') -> true isZero(s(x)) -> false Types: double :: false:true:0':s -> false:true:0':s permute :: false:true:0':s -> false:true:0':s -> a:b:c -> false:true:0':s a :: a:b:c isZero :: false:true:0':s -> false:true:0':s b :: a:b:c false :: false:true:0':s ack :: false:true:0':s -> false:true:0':s -> false:true:0':s p :: false:true:0':s -> false:true:0':s c :: a:b:c true :: false:true:0':s 0' :: false:true:0':s s :: false:true:0':s -> false:true:0':s plus :: false:true:0':s -> false:true:0':s -> false:true:0':s hole_false:true:0':s1_0 :: false:true:0':s hole_a:b:c2_0 :: a:b:c gen_false:true:0':s3_0 :: Nat -> false:true:0':s Lemmas: plus(gen_false:true:0':s3_0(a), gen_false:true:0':s3_0(+(2, *(2, n5_0)))) -> *4_0, rt in Omega(n5_0) ack(gen_false:true:0':s3_0(1), gen_false:true:0':s3_0(+(1, n2887_0))) -> *4_0, rt in Omega(n2887_0) Generator Equations: gen_false:true:0':s3_0(0) <=> true gen_false:true:0':s3_0(+(x, 1)) <=> s(gen_false:true:0':s3_0(x)) The following defined symbols remain to be analysed: permute