/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxWeightedTrs (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxTypedWeightedTrs (5) CompletionProof [UPPER BOUND(ID), 0 ms] (6) CpxTypedWeightedCompleteTrs (7) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedCompleteTrs (9) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (10) CpxRNTS (11) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxRNTS (13) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 1 ms] (14) CpxRNTS (15) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (16) CpxRNTS (17) IntTrsBoundProof [UPPER BOUND(ID), 236 ms] (18) CpxRNTS (19) IntTrsBoundProof [UPPER BOUND(ID), 55 ms] (20) CpxRNTS (21) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 243 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 136 ms] (26) CpxRNTS (27) FinalProof [FINISHED, 0 ms] (28) BOUNDS(1, n^1) (29) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (30) TRS for Loop Detection (31) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (32) BEST (33) proven lower bound (34) LowerBoundPropagationProof [FINISHED, 0 ms] (35) BOUNDS(n^1, INF) (36) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: g(x, y) -> x g(x, y) -> y f(0, 1, x) -> f(s(x), x, x) f(x, y, s(z)) -> s(f(0, 1, z)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: g(x, y) -> x [1] g(x, y) -> y [1] f(0, 1, x) -> f(s(x), x, x) [1] f(x, y, s(z)) -> s(f(0, 1, z)) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: g(x, y) -> x [1] g(x, y) -> y [1] f(0, 1, x) -> f(s(x), x, x) [1] f(x, y, s(z)) -> s(f(0, 1, z)) [1] The TRS has the following type information: g :: g -> g -> g f :: 0:1:s -> 0:1:s -> 0:1:s -> 0:1:s 0 :: 0:1:s 1 :: 0:1:s s :: 0:1:s -> 0:1:s Rewrite Strategy: INNERMOST ---------------------------------------- (5) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: g_2 f_3 (c) The following functions are completely defined: none Due to the following rules being added: none And the following fresh constants: const ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: g(x, y) -> x [1] g(x, y) -> y [1] f(0, 1, x) -> f(s(x), x, x) [1] f(x, y, s(z)) -> s(f(0, 1, z)) [1] The TRS has the following type information: g :: g -> g -> g f :: 0:1:s -> 0:1:s -> 0:1:s -> 0:1:s 0 :: 0:1:s 1 :: 0:1:s s :: 0:1:s -> 0:1:s const :: g Rewrite Strategy: INNERMOST ---------------------------------------- (7) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: g(x, y) -> x [1] g(x, y) -> y [1] f(0, 1, x) -> f(s(x), x, x) [1] f(x, y, s(z)) -> s(f(0, 1, z)) [1] The TRS has the following type information: g :: g -> g -> g f :: 0:1:s -> 0:1:s -> 0:1:s -> 0:1:s 0 :: 0:1:s 1 :: 0:1:s s :: 0:1:s -> 0:1:s const :: g Rewrite Strategy: INNERMOST ---------------------------------------- (9) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 1 => 1 const => 0 ---------------------------------------- (10) Obligation: Complexity RNTS consisting of the following rules: f(z', z'', z1) -{ 1 }-> f(1 + x, x, x) :|: x >= 0, z'' = 1, z1 = x, z' = 0 f(z', z'', z1) -{ 1 }-> 1 + f(0, 1, z) :|: z >= 0, z' = x, z'' = y, x >= 0, y >= 0, z1 = 1 + z g(z', z'') -{ 1 }-> x :|: z' = x, z'' = y, x >= 0, y >= 0 g(z', z'') -{ 1 }-> y :|: z' = x, z'' = y, x >= 0, y >= 0 ---------------------------------------- (11) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (12) Obligation: Complexity RNTS consisting of the following rules: f(z', z'', z1) -{ 1 }-> f(1 + z1, z1, z1) :|: z1 >= 0, z'' = 1, z' = 0 f(z', z'', z1) -{ 1 }-> 1 + f(0, 1, z1 - 1) :|: z1 - 1 >= 0, z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z' :|: z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0 ---------------------------------------- (13) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { g } { f } ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: f(z', z'', z1) -{ 1 }-> f(1 + z1, z1, z1) :|: z1 >= 0, z'' = 1, z' = 0 f(z', z'', z1) -{ 1 }-> 1 + f(0, 1, z1 - 1) :|: z1 - 1 >= 0, z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z' :|: z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0 Function symbols to be analyzed: {g}, {f} ---------------------------------------- (15) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: f(z', z'', z1) -{ 1 }-> f(1 + z1, z1, z1) :|: z1 >= 0, z'' = 1, z' = 0 f(z', z'', z1) -{ 1 }-> 1 + f(0, 1, z1 - 1) :|: z1 - 1 >= 0, z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z' :|: z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0 Function symbols to be analyzed: {g}, {f} ---------------------------------------- (17) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: g after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z' + z'' ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: f(z', z'', z1) -{ 1 }-> f(1 + z1, z1, z1) :|: z1 >= 0, z'' = 1, z' = 0 f(z', z'', z1) -{ 1 }-> 1 + f(0, 1, z1 - 1) :|: z1 - 1 >= 0, z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z' :|: z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0 Function symbols to be analyzed: {g}, {f} Previous analysis results are: g: runtime: ?, size: O(n^1) [z' + z''] ---------------------------------------- (19) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: g after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: f(z', z'', z1) -{ 1 }-> f(1 + z1, z1, z1) :|: z1 >= 0, z'' = 1, z' = 0 f(z', z'', z1) -{ 1 }-> 1 + f(0, 1, z1 - 1) :|: z1 - 1 >= 0, z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z' :|: z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0 Function symbols to be analyzed: {f} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z' + z''] ---------------------------------------- (21) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: f(z', z'', z1) -{ 1 }-> f(1 + z1, z1, z1) :|: z1 >= 0, z'' = 1, z' = 0 f(z', z'', z1) -{ 1 }-> 1 + f(0, 1, z1 - 1) :|: z1 - 1 >= 0, z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z' :|: z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0 Function symbols to be analyzed: {f} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z' + z''] ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: f after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: f(z', z'', z1) -{ 1 }-> f(1 + z1, z1, z1) :|: z1 >= 0, z'' = 1, z' = 0 f(z', z'', z1) -{ 1 }-> 1 + f(0, 1, z1 - 1) :|: z1 - 1 >= 0, z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z' :|: z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0 Function symbols to be analyzed: {f} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z' + z''] f: runtime: ?, size: O(1) [0] ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: f after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + 2*z1 ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: f(z', z'', z1) -{ 1 }-> f(1 + z1, z1, z1) :|: z1 >= 0, z'' = 1, z' = 0 f(z', z'', z1) -{ 1 }-> 1 + f(0, 1, z1 - 1) :|: z1 - 1 >= 0, z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z' :|: z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0 Function symbols to be analyzed: Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z' + z''] f: runtime: O(n^1) [1 + 2*z1], size: O(1) [0] ---------------------------------------- (27) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (28) BOUNDS(1, n^1) ---------------------------------------- (29) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (30) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: g(x, y) -> x g(x, y) -> y f(0, 1, x) -> f(s(x), x, x) f(x, y, s(z)) -> s(f(0, 1, z)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (31) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence f(x, y, s(z)) ->^+ s(f(0, 1, z)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [z / s(z)]. The result substitution is [x / 0, y / 1]. ---------------------------------------- (32) Complex Obligation (BEST) ---------------------------------------- (33) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: g(x, y) -> x g(x, y) -> y f(0, 1, x) -> f(s(x), x, x) f(x, y, s(z)) -> s(f(0, 1, z)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (34) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (35) BOUNDS(n^1, INF) ---------------------------------------- (36) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: g(x, y) -> x g(x, y) -> y f(0, 1, x) -> f(s(x), x, x) f(x, y, s(z)) -> s(f(0, 1, z)) S is empty. Rewrite Strategy: INNERMOST