/export/starexec/sandbox2/solver/bin/starexec_run_tct_rci /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1),O(n^1)) * Step 1: Sum WORST_CASE(Omega(n^1),O(n^1)) + Considered Problem: - Strict TRS: f(x,y,s(z)) -> s(f(0(),1(),z)) f(0(),1(),x) -> f(s(x),x,x) g(x,y) -> x g(x,y) -> y - Signature: {f/3,g/2} / {0/0,1/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {f,g} and constructors {0,1,s} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: f(x,y,s(z)) -> s(f(0(),1(),z)) f(0(),1(),x) -> f(s(x),x,x) g(x,y) -> x g(x,y) -> y - Signature: {f/3,g/2} / {0/0,1/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {f,g} and constructors {0,1,s} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: f(x,y,z){z -> s(z)} = f(x,y,s(z)) ->^+ s(f(0(),1(),z)) = C[f(0(),1(),z) = f(x,y,z){x -> 0(),y -> 1()}] ** Step 1.b:1: DependencyPairs WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: f(x,y,s(z)) -> s(f(0(),1(),z)) f(0(),1(),x) -> f(s(x),x,x) g(x,y) -> x g(x,y) -> y - Signature: {f/3,g/2} / {0/0,1/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {f,g} and constructors {0,1,s} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs f#(x,y,s(z)) -> c_1(f#(0(),1(),z)) f#(0(),1(),x) -> c_2(f#(s(x),x,x)) g#(x,y) -> c_3() g#(x,y) -> c_4() Weak DPs and mark the set of starting terms. ** Step 1.b:2: PredecessorEstimation WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(x,y,s(z)) -> c_1(f#(0(),1(),z)) f#(0(),1(),x) -> c_2(f#(s(x),x,x)) g#(x,y) -> c_3() g#(x,y) -> c_4() - Weak TRS: f(x,y,s(z)) -> s(f(0(),1(),z)) f(0(),1(),x) -> f(s(x),x,x) g(x,y) -> x g(x,y) -> y - Signature: {f/3,g/2,f#/3,g#/2} / {0/0,1/0,s/1,c_1/1,c_2/1,c_3/0,c_4/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {0,1,s} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {3,4} by application of Pre({3,4}) = {}. Here rules are labelled as follows: 1: f#(x,y,s(z)) -> c_1(f#(0(),1(),z)) 2: f#(0(),1(),x) -> c_2(f#(s(x),x,x)) 3: g#(x,y) -> c_3() 4: g#(x,y) -> c_4() ** Step 1.b:3: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(x,y,s(z)) -> c_1(f#(0(),1(),z)) f#(0(),1(),x) -> c_2(f#(s(x),x,x)) - Weak DPs: g#(x,y) -> c_3() g#(x,y) -> c_4() - Weak TRS: f(x,y,s(z)) -> s(f(0(),1(),z)) f(0(),1(),x) -> f(s(x),x,x) g(x,y) -> x g(x,y) -> y - Signature: {f/3,g/2,f#/3,g#/2} / {0/0,1/0,s/1,c_1/1,c_2/1,c_3/0,c_4/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {0,1,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:f#(x,y,s(z)) -> c_1(f#(0(),1(),z)) -->_1 f#(0(),1(),x) -> c_2(f#(s(x),x,x)):2 -->_1 f#(x,y,s(z)) -> c_1(f#(0(),1(),z)):1 2:S:f#(0(),1(),x) -> c_2(f#(s(x),x,x)) -->_1 f#(x,y,s(z)) -> c_1(f#(0(),1(),z)):1 3:W:g#(x,y) -> c_3() 4:W:g#(x,y) -> c_4() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 4: g#(x,y) -> c_4() 3: g#(x,y) -> c_3() ** Step 1.b:4: UsableRules WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(x,y,s(z)) -> c_1(f#(0(),1(),z)) f#(0(),1(),x) -> c_2(f#(s(x),x,x)) - Weak TRS: f(x,y,s(z)) -> s(f(0(),1(),z)) f(0(),1(),x) -> f(s(x),x,x) g(x,y) -> x g(x,y) -> y - Signature: {f/3,g/2,f#/3,g#/2} / {0/0,1/0,s/1,c_1/1,c_2/1,c_3/0,c_4/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {0,1,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: f#(x,y,s(z)) -> c_1(f#(0(),1(),z)) f#(0(),1(),x) -> c_2(f#(s(x),x,x)) ** Step 1.b:5: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(x,y,s(z)) -> c_1(f#(0(),1(),z)) f#(0(),1(),x) -> c_2(f#(s(x),x,x)) - Signature: {f/3,g/2,f#/3,g#/2} / {0/0,1/0,s/1,c_1/1,c_2/1,c_3/0,c_4/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {0,1,s} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_1) = {1}, uargs(c_2) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [1] p(1) = [0] p(f) = [0] p(g) = [0] p(s) = [0] p(f#) = [4] x1 + [3] p(g#) = [0] p(c_1) = [1] x1 + [2] p(c_2) = [1] x1 + [1] p(c_3) = [4] p(c_4) = [2] Following rules are strictly oriented: f#(0(),1(),x) = [7] > [4] = c_2(f#(s(x),x,x)) Following rules are (at-least) weakly oriented: f#(x,y,s(z)) = [4] x + [3] >= [9] = c_1(f#(0(),1(),z)) Further, it can be verified that all rules not oriented are covered by the weightgap condition. ** Step 1.b:6: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(x,y,s(z)) -> c_1(f#(0(),1(),z)) - Weak DPs: f#(0(),1(),x) -> c_2(f#(s(x),x,x)) - Signature: {f/3,g/2,f#/3,g#/2} / {0/0,1/0,s/1,c_1/1,c_2/1,c_3/0,c_4/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {0,1,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_1) = {1}, uargs(c_2) = {1} Following symbols are considered usable: {f#,g#} TcT has computed the following interpretation: p(0) = [4] p(1) = [1] p(f) = [1] x1 + [2] x2 + [1] p(g) = [1] x1 + [2] x2 + [0] p(s) = [1] x1 + [8] p(f#) = [1] x3 + [0] p(g#) = [1] x2 + [4] p(c_1) = [1] x1 + [7] p(c_2) = [1] x1 + [0] p(c_3) = [1] p(c_4) = [0] Following rules are strictly oriented: f#(x,y,s(z)) = [1] z + [8] > [1] z + [7] = c_1(f#(0(),1(),z)) Following rules are (at-least) weakly oriented: f#(0(),1(),x) = [1] x + [0] >= [1] x + [0] = c_2(f#(s(x),x,x)) ** Step 1.b:7: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: f#(x,y,s(z)) -> c_1(f#(0(),1(),z)) f#(0(),1(),x) -> c_2(f#(s(x),x,x)) - Signature: {f/3,g/2,f#/3,g#/2} / {0/0,1/0,s/1,c_1/1,c_2/1,c_3/0,c_4/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {0,1,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),O(n^1))