/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^2), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 301 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 50 ms] (14) BEST (15) proven lower bound (16) LowerBoundPropagationProof [FINISHED, 0 ms] (17) BOUNDS(n^2, INF) (18) typed CpxTrs (19) RewriteLemmaProof [LOWER BOUND(ID), 62 ms] (20) typed CpxTrs (21) RewriteLemmaProof [LOWER BOUND(ID), 24 ms] (22) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: +(0, y) -> y +(s(x), y) -> s(+(x, y)) *(x, 0) -> 0 *(x, s(y)) -> +(x, *(x, y)) twice(0) -> 0 twice(s(x)) -> s(s(twice(x))) -(x, 0) -> x -(s(x), s(y)) -> -(x, y) f(s(x)) -> f(-(*(s(s(x)), s(s(x))), +(*(s(x), s(s(x))), s(s(0))))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: +'(0', y) -> y +'(s(x), y) -> s(+'(x, y)) *'(x, 0') -> 0' *'(x, s(y)) -> +'(x, *'(x, y)) twice(0') -> 0' twice(s(x)) -> s(s(twice(x))) -(x, 0') -> x -(s(x), s(y)) -> -(x, y) f(s(x)) -> f(-(*'(s(s(x)), s(s(x))), +'(*'(s(x), s(s(x))), s(s(0'))))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: Innermost TRS: Rules: +'(0', y) -> y +'(s(x), y) -> s(+'(x, y)) *'(x, 0') -> 0' *'(x, s(y)) -> +'(x, *'(x, y)) twice(0') -> 0' twice(s(x)) -> s(s(twice(x))) -(x, 0') -> x -(s(x), s(y)) -> -(x, y) f(s(x)) -> f(-(*'(s(s(x)), s(s(x))), +'(*'(s(x), s(s(x))), s(s(0'))))) Types: +' :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s *' :: 0':s -> 0':s -> 0':s twice :: 0':s -> 0':s - :: 0':s -> 0':s -> 0':s f :: 0':s -> f hole_0':s1_0 :: 0':s hole_f2_0 :: f gen_0':s3_0 :: Nat -> 0':s ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: +', *', twice, -, f They will be analysed ascendingly in the following order: +' < *' +' < f *' < f - < f ---------------------------------------- (6) Obligation: Innermost TRS: Rules: +'(0', y) -> y +'(s(x), y) -> s(+'(x, y)) *'(x, 0') -> 0' *'(x, s(y)) -> +'(x, *'(x, y)) twice(0') -> 0' twice(s(x)) -> s(s(twice(x))) -(x, 0') -> x -(s(x), s(y)) -> -(x, y) f(s(x)) -> f(-(*'(s(s(x)), s(s(x))), +'(*'(s(x), s(s(x))), s(s(0'))))) Types: +' :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s *' :: 0':s -> 0':s -> 0':s twice :: 0':s -> 0':s - :: 0':s -> 0':s -> 0':s f :: 0':s -> f hole_0':s1_0 :: 0':s hole_f2_0 :: f gen_0':s3_0 :: Nat -> 0':s Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: +', *', twice, -, f They will be analysed ascendingly in the following order: +' < *' +' < f *' < f - < f ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: +'(gen_0':s3_0(n5_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n5_0, b)), rt in Omega(1 + n5_0) Induction Base: +'(gen_0':s3_0(0), gen_0':s3_0(b)) ->_R^Omega(1) gen_0':s3_0(b) Induction Step: +'(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(b)) ->_R^Omega(1) s(+'(gen_0':s3_0(n5_0), gen_0':s3_0(b))) ->_IH s(gen_0':s3_0(+(b, c6_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: +'(0', y) -> y +'(s(x), y) -> s(+'(x, y)) *'(x, 0') -> 0' *'(x, s(y)) -> +'(x, *'(x, y)) twice(0') -> 0' twice(s(x)) -> s(s(twice(x))) -(x, 0') -> x -(s(x), s(y)) -> -(x, y) f(s(x)) -> f(-(*'(s(s(x)), s(s(x))), +'(*'(s(x), s(s(x))), s(s(0'))))) Types: +' :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s *' :: 0':s -> 0':s -> 0':s twice :: 0':s -> 0':s - :: 0':s -> 0':s -> 0':s f :: 0':s -> f hole_0':s1_0 :: 0':s hole_f2_0 :: f gen_0':s3_0 :: Nat -> 0':s Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: +', *', twice, -, f They will be analysed ascendingly in the following order: +' < *' +' < f *' < f - < f ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Innermost TRS: Rules: +'(0', y) -> y +'(s(x), y) -> s(+'(x, y)) *'(x, 0') -> 0' *'(x, s(y)) -> +'(x, *'(x, y)) twice(0') -> 0' twice(s(x)) -> s(s(twice(x))) -(x, 0') -> x -(s(x), s(y)) -> -(x, y) f(s(x)) -> f(-(*'(s(s(x)), s(s(x))), +'(*'(s(x), s(s(x))), s(s(0'))))) Types: +' :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s *' :: 0':s -> 0':s -> 0':s twice :: 0':s -> 0':s - :: 0':s -> 0':s -> 0':s f :: 0':s -> f hole_0':s1_0 :: 0':s hole_f2_0 :: f gen_0':s3_0 :: Nat -> 0':s Lemmas: +'(gen_0':s3_0(n5_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n5_0, b)), rt in Omega(1 + n5_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: *', twice, -, f They will be analysed ascendingly in the following order: *' < f - < f ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: *'(gen_0':s3_0(a), gen_0':s3_0(n558_0)) -> gen_0':s3_0(*(n558_0, a)), rt in Omega(1 + a*n558_0 + n558_0) Induction Base: *'(gen_0':s3_0(a), gen_0':s3_0(0)) ->_R^Omega(1) 0' Induction Step: *'(gen_0':s3_0(a), gen_0':s3_0(+(n558_0, 1))) ->_R^Omega(1) +'(gen_0':s3_0(a), *'(gen_0':s3_0(a), gen_0':s3_0(n558_0))) ->_IH +'(gen_0':s3_0(a), gen_0':s3_0(*(c559_0, a))) ->_L^Omega(1 + a) gen_0':s3_0(+(a, *(n558_0, a))) We have rt in Omega(n^2) and sz in O(n). Thus, we have irc_R in Omega(n^2). ---------------------------------------- (14) Complex Obligation (BEST) ---------------------------------------- (15) Obligation: Proved the lower bound n^2 for the following obligation: Innermost TRS: Rules: +'(0', y) -> y +'(s(x), y) -> s(+'(x, y)) *'(x, 0') -> 0' *'(x, s(y)) -> +'(x, *'(x, y)) twice(0') -> 0' twice(s(x)) -> s(s(twice(x))) -(x, 0') -> x -(s(x), s(y)) -> -(x, y) f(s(x)) -> f(-(*'(s(s(x)), s(s(x))), +'(*'(s(x), s(s(x))), s(s(0'))))) Types: +' :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s *' :: 0':s -> 0':s -> 0':s twice :: 0':s -> 0':s - :: 0':s -> 0':s -> 0':s f :: 0':s -> f hole_0':s1_0 :: 0':s hole_f2_0 :: f gen_0':s3_0 :: Nat -> 0':s Lemmas: +'(gen_0':s3_0(n5_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n5_0, b)), rt in Omega(1 + n5_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: *', twice, -, f They will be analysed ascendingly in the following order: *' < f - < f ---------------------------------------- (16) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (17) BOUNDS(n^2, INF) ---------------------------------------- (18) Obligation: Innermost TRS: Rules: +'(0', y) -> y +'(s(x), y) -> s(+'(x, y)) *'(x, 0') -> 0' *'(x, s(y)) -> +'(x, *'(x, y)) twice(0') -> 0' twice(s(x)) -> s(s(twice(x))) -(x, 0') -> x -(s(x), s(y)) -> -(x, y) f(s(x)) -> f(-(*'(s(s(x)), s(s(x))), +'(*'(s(x), s(s(x))), s(s(0'))))) Types: +' :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s *' :: 0':s -> 0':s -> 0':s twice :: 0':s -> 0':s - :: 0':s -> 0':s -> 0':s f :: 0':s -> f hole_0':s1_0 :: 0':s hole_f2_0 :: f gen_0':s3_0 :: Nat -> 0':s Lemmas: +'(gen_0':s3_0(n5_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n5_0, b)), rt in Omega(1 + n5_0) *'(gen_0':s3_0(a), gen_0':s3_0(n558_0)) -> gen_0':s3_0(*(n558_0, a)), rt in Omega(1 + a*n558_0 + n558_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: twice, -, f They will be analysed ascendingly in the following order: - < f ---------------------------------------- (19) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: twice(gen_0':s3_0(n1254_0)) -> gen_0':s3_0(*(2, n1254_0)), rt in Omega(1 + n1254_0) Induction Base: twice(gen_0':s3_0(0)) ->_R^Omega(1) 0' Induction Step: twice(gen_0':s3_0(+(n1254_0, 1))) ->_R^Omega(1) s(s(twice(gen_0':s3_0(n1254_0)))) ->_IH s(s(gen_0':s3_0(*(2, c1255_0)))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (20) Obligation: Innermost TRS: Rules: +'(0', y) -> y +'(s(x), y) -> s(+'(x, y)) *'(x, 0') -> 0' *'(x, s(y)) -> +'(x, *'(x, y)) twice(0') -> 0' twice(s(x)) -> s(s(twice(x))) -(x, 0') -> x -(s(x), s(y)) -> -(x, y) f(s(x)) -> f(-(*'(s(s(x)), s(s(x))), +'(*'(s(x), s(s(x))), s(s(0'))))) Types: +' :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s *' :: 0':s -> 0':s -> 0':s twice :: 0':s -> 0':s - :: 0':s -> 0':s -> 0':s f :: 0':s -> f hole_0':s1_0 :: 0':s hole_f2_0 :: f gen_0':s3_0 :: Nat -> 0':s Lemmas: +'(gen_0':s3_0(n5_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n5_0, b)), rt in Omega(1 + n5_0) *'(gen_0':s3_0(a), gen_0':s3_0(n558_0)) -> gen_0':s3_0(*(n558_0, a)), rt in Omega(1 + a*n558_0 + n558_0) twice(gen_0':s3_0(n1254_0)) -> gen_0':s3_0(*(2, n1254_0)), rt in Omega(1 + n1254_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: -, f They will be analysed ascendingly in the following order: - < f ---------------------------------------- (21) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: -(gen_0':s3_0(n1534_0), gen_0':s3_0(n1534_0)) -> gen_0':s3_0(0), rt in Omega(1 + n1534_0) Induction Base: -(gen_0':s3_0(0), gen_0':s3_0(0)) ->_R^Omega(1) gen_0':s3_0(0) Induction Step: -(gen_0':s3_0(+(n1534_0, 1)), gen_0':s3_0(+(n1534_0, 1))) ->_R^Omega(1) -(gen_0':s3_0(n1534_0), gen_0':s3_0(n1534_0)) ->_IH gen_0':s3_0(0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (22) Obligation: Innermost TRS: Rules: +'(0', y) -> y +'(s(x), y) -> s(+'(x, y)) *'(x, 0') -> 0' *'(x, s(y)) -> +'(x, *'(x, y)) twice(0') -> 0' twice(s(x)) -> s(s(twice(x))) -(x, 0') -> x -(s(x), s(y)) -> -(x, y) f(s(x)) -> f(-(*'(s(s(x)), s(s(x))), +'(*'(s(x), s(s(x))), s(s(0'))))) Types: +' :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s *' :: 0':s -> 0':s -> 0':s twice :: 0':s -> 0':s - :: 0':s -> 0':s -> 0':s f :: 0':s -> f hole_0':s1_0 :: 0':s hole_f2_0 :: f gen_0':s3_0 :: Nat -> 0':s Lemmas: +'(gen_0':s3_0(n5_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n5_0, b)), rt in Omega(1 + n5_0) *'(gen_0':s3_0(a), gen_0':s3_0(n558_0)) -> gen_0':s3_0(*(n558_0, a)), rt in Omega(1 + a*n558_0 + n558_0) twice(gen_0':s3_0(n1254_0)) -> gen_0':s3_0(*(2, n1254_0)), rt in Omega(1 + n1254_0) -(gen_0':s3_0(n1534_0), gen_0':s3_0(n1534_0)) -> gen_0':s3_0(0), rt in Omega(1 + n1534_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: f