/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (2) TRS for Loop Detection (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (4) BEST (5) proven lower bound (6) LowerBoundPropagationProof [FINISHED, 0 ms] (7) BOUNDS(n^1, INF) (8) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) half(0) -> 0 half(s(s(x))) -> s(half(x)) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(0, y) -> 0 times(s(x), y) -> if_times(even(s(x)), s(x), y) if_times(true, s(x), y) -> plus(times(half(s(x)), y), times(half(s(x)), y)) if_times(false, s(x), y) -> plus(y, times(x, y)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (2) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) half(0) -> 0 half(s(s(x))) -> s(half(x)) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(0, y) -> 0 times(s(x), y) -> if_times(even(s(x)), s(x), y) if_times(true, s(x), y) -> plus(times(half(s(x)), y), times(half(s(x)), y)) if_times(false, s(x), y) -> plus(y, times(x, y)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence even(s(s(x))) ->^+ even(x) gives rise to a decreasing loop by considering the right hand sides subterm at position []. The pumping substitution is [x / s(s(x))]. The result substitution is [ ]. ---------------------------------------- (4) Complex Obligation (BEST) ---------------------------------------- (5) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) half(0) -> 0 half(s(s(x))) -> s(half(x)) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(0, y) -> 0 times(s(x), y) -> if_times(even(s(x)), s(x), y) if_times(true, s(x), y) -> plus(times(half(s(x)), y), times(half(s(x)), y)) if_times(false, s(x), y) -> plus(y, times(x, y)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (6) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (7) BOUNDS(n^1, INF) ---------------------------------------- (8) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) half(0) -> 0 half(s(s(x))) -> s(half(x)) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(0, y) -> 0 times(s(x), y) -> if_times(even(s(x)), s(x), y) if_times(true, s(x), y) -> plus(times(half(s(x)), y), times(half(s(x)), y)) if_times(false, s(x), y) -> plus(y, times(x, y)) S is empty. Rewrite Strategy: INNERMOST