/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (2) TRS for Loop Detection (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (4) BEST (5) proven lower bound (6) LowerBoundPropagationProof [FINISHED, 0 ms] (7) BOUNDS(n^1, INF) (8) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: rev1(0, nil) -> 0 rev1(s(X), nil) -> s(X) rev1(X, cons(Y, L)) -> rev1(Y, L) rev(nil) -> nil rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L)) rev2(X, nil) -> nil rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L)))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (2) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: rev1(0, nil) -> 0 rev1(s(X), nil) -> s(X) rev1(X, cons(Y, L)) -> rev1(Y, L) rev(nil) -> nil rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L)) rev2(X, nil) -> nil rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L)))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence rev2(X, cons(Y, L)) ->^+ rev(cons(X, rev(rev2(Y, L)))) gives rise to a decreasing loop by considering the right hand sides subterm at position [0,1,0]. The pumping substitution is [L / cons(Y, L)]. The result substitution is [X / Y]. ---------------------------------------- (4) Complex Obligation (BEST) ---------------------------------------- (5) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: rev1(0, nil) -> 0 rev1(s(X), nil) -> s(X) rev1(X, cons(Y, L)) -> rev1(Y, L) rev(nil) -> nil rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L)) rev2(X, nil) -> nil rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L)))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (6) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (7) BOUNDS(n^1, INF) ---------------------------------------- (8) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: rev1(0, nil) -> 0 rev1(s(X), nil) -> s(X) rev1(X, cons(Y, L)) -> rev1(Y, L) rev(nil) -> nil rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L)) rev2(X, nil) -> nil rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L)))) S is empty. Rewrite Strategy: INNERMOST